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Abstract 

In spite of this widespread and critical importance of fluid conveying pipes, they suffer from major 

problems. One of these problems is the problem of vibrations that cause the collapse of the systems 

completely and cause significant economic losses if not avoided. Where, fluid conveying pipes are used in 

all hydraulic systems and enter in all industrial fields, such as water, petroleum products and gases of all 

kinds. For this reason, the researchers have dealt with this issue in all years, but the problem is not over. 

This research will highlight the problem of controlling the vibrations resulting from fluid flow inside the 

pipes, in addition to the study of reducing the vibrations of these pipes. This study is carried out by deriving 

differential equations for pipes and for different types of fixation. The research has studied the response 

and the natural frequency; the dynamic behavior of different types of stabilization of the pipes in the 

presence with no hydraulic damping (active control); and monitoring the response and stability of each 

case of stabilization. Where, in this paper using root locus technique to calculate the control for pipe 

conveying fluid. Thus, the investigation included calculated the effect for different damper parameters and 

fluid on the pipe stability. There, this work is expansion for previous study investigated the control for pipe 

vibration with using other stability and control theories, and comparison for presenting results with 

previous results, therefore, form comparison results found that the loot locus technique is a good technique 

can be using to investigation the stability and control for pipe fluid. 

Copyright © 2020 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 

Roundabout and noncircular liquid stream in pipes is every now and again experienced by and by. The 

cold and heated water utilized in our homes is siphoned in through the channels. Tap water in a city is 

spread out through broad systems of funneling. By huge pipelines gaseous petrol and oil stream around 

many miles a similar way blood is conveyed all through our bodies by veins and conduits. A similar way, 

the cooling water in a machine or a motor streams by hoses into the channels, it is cooled as it streams in 

the radiator. In the arrangement of hydronic space warming, warm vitality is moved to the flowed water in 

a kettle; a short time later, it is moved to the target areas into pipes. Liquid stream could be either inner or 

outer, according to whether the liquid is upheld to stream in a conductor or over a surface. External and 

inner streams show totally different properties. In this part internal stream is considered, where the channel 

is completely loaded up with liquid, and primarily, stream is essentially determined by pressure contrast. 
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This procedure isn't being bewildered with open channel stream technique where in part, the liquid fills 

the conduit and in this way the stream is confined somewhat by strong surfaces, as on account of a irrigation 

dump, and, thusly, gravity is the main power that drives the flow, [1]. 

At 1970 R. A. Stein et. al., [2], developed the equation of motion for pipelines of infinite length fluids that 

controlled and transported ideally. They explained the internal pressure forces of the fluid-carrying pipes, 

the effect of the coefficient of foundation, response, velocity characteristics and wave propagation of the 

non-damping system. When the fluid does not exceed critical velocity, the system is in a stable state. The 

flow has two important effects. First, it reduces oscillate but the frequency difference will increase. The 

vibration of clamped and simply ends infinitely pipe whereas  pressure decreases the observed frequency 

of the system. Also at 2001, X. Wang et. al., [3], studied the static and dynamic instabilities of submerged 

and inclined concentrically pipes transporting fluid. The equation governing the interior hollow beam 

was by-product below the tiny deformational assumption. They earned the dynamic discretized 

equations employing schemes of abstraction finite-difference. In steady flow, each buckling and flutter 

instabilities were examined.  

Then at 2002, O. Doare et. al., [4], created the relationship between the global and local motions of bending 

for fluid pipes conveying on a flexible floor or elastic foundation. The process of global imposed a pipe of 

finite with a given collection of boundary conditions, while in the process of local it referred to a pipe 

which has infinite length with a note without taking in consideration its finite ends. Various kinds of 

diffusion disturbances are specific from the relation of dispersion, namely evanescent, unstable and neutral 

waves, such as the pipe length which is increased, the global base for instability which is established to 

coincide with the neutrality of local, by dint of neutral waves generated only a local harmonic impact. 

Also, the collection of boundary conditions give lift only to instabilities of static. The process for global 

instability of the very long pipe is neutral static waves present. Contrariwise, for the collection of boundary 

conditions which permit dynamic instabilities, the process for global instability of the very long pipe is 

compatible for the presence of indifferent waves of nonzero finite frequency. These results are discussed 

in a relationship with the theory of Kulikovskii work and another comparable process in the theory of 

hydrodynamic stability. 

Also at 2010, M. R. Xu et. al., [5], the homotopy perturbation method was used in this study to derived 

candor for the natural frequencies of pipes conveying fluid with pinned- pinned boundary condition which 

are in a straightforward and systematical manner. Numerical results are offered for two cases and the 

natural frequencies are shown because of the effective influence of fluid flow velocity. Good deal with 

their empirical and FEM rival is located numerically above the ranges of practical benefit. It was also found 

in this research that the increase of the inside fluid velocity leads to the natural frequencies of the pipe 

decrease. Also, it can be seen that the theoretical results for this research agree perfectly with their 

numerical and experimental rivals with a difference that includes 10% because the flow velocity is far than 

the critical point. In this research, an alternative process to commonly used methods, complex mode 

process and Galerkin method, is submitted to survey the natural frequencies of pipes fluid conveying. This 

suggests a specific method characteristic when compared with other known methods. Specifically, the 

suggested process capable a solution represented in a forthright analytical form that does not want a 

numerical solution of every equation governing the frequencies analytical  supreme.  

At 2013, T. Szmidt et. al., [6], studied the effect of damping on the system of dynamic for pipe 

conveying fluid. They took three stabilization cases: clamped-clamped, cantilever and simply supported 

pipe. They assumed physiological parameters to the system that allows for practical results. They also 

assumed a fully advanced turbulent flow that may be approached by the named plug flow 

for associate infinite elastic of rod is affected internal the pipe. They developed easy strategies during 

which internal and external damping coefficients are calculated per the bottom of the known models. The 

partial equation governing the description is with Galerkin’s procedure. The stability of the 

consequent dynamical of the system was verified at eigenvalues of it is linearization. The actuators of 

destabilizing for pipe supported at both ends, but will noticeable progress stability for cantilever very. The 

influence of magnetic damping highly depends on the position or situation of the actuators measure hold 

off to the pipe. And reached to reduce the gap in the magnetic of circuits upgrades the potency this the 

tactic. The destabilization of each studied pipes happens at the flow velocities square measure very high. 

Also, at 2014, N. H. Mostafa, [7], studied a simply supported conveyor pipe (a hinge type) with a stable 

incompressible fluid. This pipe is placed on a viscoelastic foundation and analyzed using a finite element 

with critical fluid velocity in various parameters such as viscous coefficients and stiffness of the 

foundation. The foundation was analyzed using the modified Winkler's model. Some known results have 
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been confirmed and some new results have been obtained. He noted that two components of the foundation; 

viscosity and stiffness, affect the velocity of critical fluid moving inside the pipe in the opposite direction. 

The increased viscosity of the foundation leads to a decrease in the flow of fluid inside the pipe while 

increasing the stiffness of the foundation leads to increased flow. For some ranges of pipe lengths, the 

viscosity factors are more influential. The increased flow velocity also leads to a monotonous reduction in 

the damping ratio.  

At 2015 M. J. Jweeg et. al., [8], investigated the closed and open loop time responses to the active vibration 

concerning the smart cantilever pipe fluid conveying as a simulation and an experimental study of active 

vibrations. A program has been designed to simulate the lowering of active vibration of pipe stiffened with 

actuators and piezoelectric sensors in ANSYS. The language of parametric design is (APDL). This use 

makes the ability of finite element for the ANSYS  program and it includes an amount based on the optimal 

control of linear quadratic named (LQR) schemes to investigate the closed and open loop time responses. 

Charts are used to investigate the closed and open loop time responses. The technique is tested through the 

active control for forced and free vibrations of the smart cantilever piezoelectric for pipe fluid conveying. 

The forced vibration is considered a harmonic excitation. The simulation was used to conduct and verify 

experiments. Smart pipes are formed from pipe surface agglutinant piezoelectric splatter of transducers 

quick pack QP20W. An experiential result was obtained by programs of Lab VIEW. The effectiveness on 

the response of the system cantilever pipe is due to the position of the actuator piezoelectric. When the 

actuators are transferred nearer to the clamp, a highest displacement is obtained. The reason is due to the 

higher strain construct approach of the clamped. The performance of control recedes at increasing the 

velocity of flow because of raise Coriolis force. The best effect of control happens at a minimum speed 

discharge =10L/ min. The position of the actuator, extreme drop the response of displacement ranges from 

(8) mm to (1) mm. also, at same year, same researchers, [9], presenting investigation of control for pipe 

conveying fluid by using piezoelectric actuators. Where, the investigation included analytical and 

experimental techniques to control of pipe structure. Thus, the experimental part included manufacturing 

of actuators to control on the pipe vibration with various flow parameters effect. In addition investigation 

analytically and experimentally of dynamic behavior for pipe conveying fluid with various parameters 

effect, [10]. Thus, this investigation included manufactured for vibration rig to calculated the dynamic 

behavior for pipe by using vibration test machine, in addition to, using the analytical solution for general 

equation of motion for pipe conveying fluid and calculated the dynamic behavior for pipe, and then 

comparison the results together. 

Then, at 2017, M. J. Jweeg et. al., [11], investigated the dynamic behavior for pipe conveying fluid with 

various crack effect. Where, the investigation included using experimental and analytical technique to 

calculate the natural frequency for pipe with crack depth and location effect. Thus, the analytical work 

included drive for the general equation of motion and solved its equation for simply supported pipe, and 

then, comparison the results calculated with experimental results calculated. After this, at 2018 S. N. 

Alnomani, [12], the finite element method used in this study was utilized to analyze the dynamic stability 

of the fluid-carrying pipe, which was changed in stiffness by the internal flow of the fluid and by the linear 

spring. Multiple effective parameters of great importance that play a key role in determining the stability, 

for example, the effect of location for the spring along the pipe in different locations and the effect of 

increased linear stiffness of the spring and the study of the proportion of diameters as well. Also taking 

into account the flow velocity over the stability of the system. Also concluded that the constant of spring 

at this dynamic behavior becomes widely for sensitive and the spring gives good results to the system with 

respect to its frequencies. The preferred location of the spring depends on the velocity of flow inside the 

pipe and also depends on the spring constant. 

Finally, at 2019, D. S. Hussein et. al., [13, 14], analysis for control vibration of pipe conveying fluid by 

using state space, [13], and bode diagram technique, [14]. Thus, the investigation included analysis for 

dynamic behaviour for pipe induce vibration with different supported, and then, drive the general equation 

of motion for vibration pipe, and finally, solution for its equation and calculating the dynamic response for 

pipe with different flow parameters effect. Where, the technique used to analysis the dynamic behaviour 

for pipe was analytical solution by state space technique to analysis the pipe response, [13], and the bode 

diagram technique to calculated the stability for pipe with various parameters effect, [14]. Therefore, in 

this paper, investigation the effect for active damper parameters and different flow parameters on the pipe 

control by using root locus technique by solution the general equation of motion analytically of pipe 

conveying fluid with different boundary condition. In addition, comparison the results calculated together 

with previous results calculated, [13, 14].      
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2. Analytical Investigation 

Analytical solution for dynamic behavior for control pipe conveying fluid included evaluated the pipe 

stability with different damper and flow parameters effect. There, the solution for pipe vibration control 

required drive the general equation of motion for pipe, and then, applied the boundary condition for pipe, 

then, solution for its equation by using selected stability method, [15-17]. Therefore, analytical of 

investigation of the dynamical behavior of pipe conveying fluid will be given, where will examine the 

equations of the pipes, will take the channels in various sorts of installation and will apply the limit states 

of each limit according to the establishment. In this work utilize differential conditions for the vibration of 

pipes. So as to conduct an overall investigation into the dynamic behavior of pipes conveying fluid, a lot 

of solutions will be attempted. Based on former researchers, the task will focus on the analyses of the 

stability of the zero balance status of fluid conveying pipes under pulsating flow. The equations were 

modified utilizing the Matlab and discovering results. When the critical velocity is bigger than the average 

velocity, or ucr > u0, matrix S owns two pairs from eigenvalues (pure imaginary). Note that ucr, critical 

velocity, with term, 

ucr = √(T+
1

2
g̅ +

−(c11 λ2
4+c22 λ1

4)+√(c11 λ2
4−c22 λ1

4)
2
+4c11c22g̅

2e2

2c11c22
)                                                            (1) 

In case of negligence, the preload and gravity  ucr will be simplified as follows, 

ucr
2 = −

 λ1
4

c11
 ⇒ ucr = √−

 λ1
4

c11
= {

 πi      p − p

6.38i c − c

                               

If, assume ±Ω1i , ±Ω2i as eigenvalues of matrix S, that would be, 

U−1SU = (

Ω1i 0 0 0
0 −Ω1i 0 0
0 0 Ω2i 0
0 0 0 −Ω2i

)                                                                                                     (2) 

Ω1and Ω2 are the natural frequencies of fluid conveying pipes vibrations within the velocity of steady flow. 

U is a matrix with eigenvectors with relative eigenvalues ±Ω1i , ±Ω2i of matrix S. If, 

Ω = (

0 −Ω1 0 0
Ω1 0 0 0
0 0 0 −Ω2
0 0 Ω2 0

)                                                                                                                  (3) 

Where, ±ω1i , ±ω2i, are the eigenvalues of matrix Ω, then, 

V−1SV = (

Ω1i 0 0 0
0 −Ω1i 0 0
0 0 Ω2i 0
0 0 0 −Ω2i

)                                                                                                     (4) 

Where, V, matrix forms from eigenvectors to eigenvalues  ±Ω1i , ±Ω2i for matrix Ω. Then, connect Eq. 

(1) with Eq. (3), then, 

(UV−1)−1SUV−1 = Ω                                                                                                                                (5) 

If, 

P = UV−1                                                                                                                                                   (6) 

Then, 

P−1SP = (

0 −Ω1 0 0
Ω1 0 0 0
0 0 0 −Ω2
0 0 Ω2 0

) = Ω                                                                                                 (7) 

Where, P, transformation matrix. Assume, 

X = PZ, Z = [z1 z2 z3 z4]T                                                                                                              (8) 

Though the nonlinear portion influences are not taken into consideration for system stability through the 

state of zero balance (excluding critical attitudes), then,  

PŻ = SPZ + μP−1[ωsin(ωτ)B1 − cos(ωτ)B2 − α̅B3]PZ                                                                      (9) 

Both sides multiplying of Eq. (9) with matrix inverse P, 

Ż = SPZ + μ[ωsin(ωτ)B1 − cos(ωτ)B2 − α̅B3]PZ                                                                             (10) 



International Journal of Energy and Environment (IJEE), Volume 11, Issue 1, 2020, pp.79-96 

ISSN 2076-2895 (Print), ISSN 2076-2909 (Online) ©2020 International Energy & Environment Foundation. All rights reserved. 

83 

Make the relays, 

P−1BiP = Ai   ,                   i = 1,2,3                                                                                                         (11) 

Enter Eq. (7) and Eq. (11) into Eq. (10), 

Ż = ΩZ + μ[ωsin(ωτ)A1 − cos(ωτ)A2 − α̅A3]Z                                                                                 (12) 

Eq. (12) is changed into Eq. (13), introducing variable t = ωτ and transforming time variable (τ), 
dZ

dt
=

Ω

ω
Z + μ [A1sin(t) −

1

ω
cos(t)A2 −

α̅

ω
A3] Z                                                                                   (13) 

The vibration characteristics for non-conservative and conservative fluid conveying pipes will be 

investigated. Estimates of the natural frequencies for pipes is the essential purpose of this analysis. For 

that, there is a needed to gain the linear equations of motion in the district for the position of equilibrium. 

When the pulsating flow and external force are neglected and the pipe is in the steady state, the linearized 

equation of equation will be, 

η̈ + 2Mru0η′̇ + [u0
2 + Π]η″ + η(4) = 0                                                                                                  (14) 

The Eq. (14) is inhomogeneous where the derivative coefficients of η are frank functions of τ and ξ then 

the discretized equation of motion above, by using the Galerkin’s way let, 

η(ξ , τ) = ∑ ϕi(
∞
i=1 ξ ) qi(τ)                                                                                                                     (15) 

Where, ϕi(ξ ) is an comparison function, qi(τ)  is an generalized coordinate where they satisfy all the 

boundary conditions. Choose the first three orders to manage researches, that is, 

η(ξ , τ) = ∑ ϕi(
3
i=1 ξ ) qi(τ) = ϕ1(ξ )q1(τ) + ϕ2(ξ )q3(τ) + ϕ3(ξ )q3(τ)                                           (16) 

For pipes pinned at both ends, the function of its vibration model is, 

ϕi = √2 sin(λiξ) ,        i = 1,2,3                                                                                                             (17) 

Where,  λ1 , λ2 and λ3 are pipe eigenvalues. For,  

λ1 = π , λ2 = 2π, λ3 = 3π. 

For pipes fixed at both ends, the function of its vibration model is, 

ϕi = cosh(λiξ) − cos(λiξ) +
cosh(λi)−cos(λi)

sinh(λi)−sin(λi)
[sin(λiξ) − sinh(λiξ)],      i = 1,2,3                             (18) 

Where,   

λ1 = 4.73    ,   λ2 = 7.8532    ,   λ3 = 10.9956. 

For pipes pinned at one end and fixed at another end, the function of its vibration model is, 

ϕi = cos(λiξ) − cosh(λiξ) +
cos(λi)−cosh(λi)

sin(λi)−sinh(λi)
[sin(λiξ) − sinh(λiξ)],       i = 1,2,3                            (19) 

Note that,  

λ1 = 3.9267,   λ2 = 7.0686,     λ3 = 10.2102. 

For pipes (cantilever), the function of its vibration model is, 

ϕi = cosh(λiξ) − cos(λiξ) +
sinh(λi)−sin(λi)

cosh(λi)+cos(λi)
[sin(λiξ) − sinh(λiξ)],         i = 1,2,3                          (20) 

Note that, 

λ1 = 1.87512,   λ2 = 4.6941,     λ3 = 7.85476. 

Therefore, Eq. (15) is converted into matrix type, assuming, 

Φ =

{
 
 

 
 
ϕ1

ϕ2

ϕ3}
 
 

 
 

,  

And, 

Q =

{
 
 

 
 
q1

q2

q3}
 
 

 
 

    

Then, 

η(ξ , τ) = ΦTQ = QTΦ                                                                                                                            (21) 

By compensation of Eq. (21) into Eq. (14), and assuming   H = u0
2 + Π , then, 

ϕTQ̈ + 2Mru0ϕ
′TQ̇ + Hϕ″TQ+ ϕ(4)TQ = 0                                                                                        (22) 

By multiplying Φ with two sides of Eq. (22) and then, 

ϕ ϕTQ̈ + 2Mru0ϕ ϕ
′TQ̇ + Hϕ ϕ″TQ+ ϕ ϕ(4)TQ = 0                                                                         (23) 
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The procedure ξ integral to Eq. (23) within interval [0,1], then the representation according to 

orthogonality, [18-20], for the function of trigonometric, 

∫ ϕ ϕTdξ
1

0
= I =

(

  
 

∫ ϕ1ϕ1
T1

0 ∫ ϕ2ϕ1
T1

0 ∫ ϕ3ϕ1
T1

0

∫ ϕ1ϕ2
T1

0 ∫ ϕ2ϕ2
T1

0 ∫ ϕ3ϕ2
T1

0

∫ ϕ1ϕ3
T1

0 ∫ ϕ2ϕ3
T1

0 ∫ ϕ3ϕ3
T1

0 )

  
 
dξ = (

1
1

1

)   

∫ ϕ ϕ′Tdξ
1

0
= B =

(

  
 

∫ ϕ1ϕ1
′T1

0 ∫ ϕ2ϕ1
′T1

0 ∫ ϕ3ϕ1
′T1

0

∫ ϕ1ϕ2
′T1

0 ∫ ϕ2ϕ2
′T1

0 ∫ ϕ3ϕ2
′T1

0

∫ ϕ1ϕ3
′T1

0 ∫ ϕ2ϕ3
′T1

0 ∫ ϕ3ϕ3
′T1

0 )

  
 
dξ = (

b11 b12 b13
b21 b22 b23
b31 b32 b33

)   

∫ ϕ ϕ″Tdξ
1

0
= C =

(

  
 

∫ ϕ1ϕ1
″T1

0 ∫ ϕ2ϕ1
″T1

0 ∫ ϕ3ϕ1
″T1

0

∫ ϕ1ϕ2
″T1

0 ∫ ϕ2ϕ2
″T1

0 ∫ ϕ3ϕ2
″T1

0

∫ ϕ1ϕ3
″T1

0 ∫ ϕ2ϕ3
″T1

0 ∫ ϕ3ϕ3
″T1

0 )

  
 
dξ = (

c11 c12 c13
c21 c22 c23
c31 c32 c33

)   

∫ ϕ ϕ(4)Tdξ
1

0
= Λ =

(

  
 

∫ ϕ1ϕ1
(4)T1

0 ∫ ϕ2ϕ1
(4)T1

0 ∫ ϕ3ϕ1
(4)T1

0

∫ ϕ1ϕ2
(4)T1

0 ∫ ϕ2ϕ2
(4)T1

0 ∫ ϕ3ϕ2
(4)T1

0

∫ ϕ1ϕ3
(4)T1

0 ∫ ϕ2ϕ3
(4)T1

0 ∫ ϕ3ϕ3
(4)T1

0 )

  
 
dξ = (

λ1
4

λ2
4

λ3
4

)                           (24) 

The specific boundary conditions are  ϕ1 , ϕ2 and ϕ3 which are the first three mode functions.  

I. For pipes pinned at both ends, the B and C matrixes are, 

B = (

0 −2.6667 0

2.6667 0 −4.8

0 4.8 0

)    

C = (

−(π2) 0 0

0 −(2π2) 0

0 0 −(3π2)

)  

II. For fixed pipes at both ends, the matrix B and C are, 

B =

(

 
 

0 −3.3421 0

3.3421 0 −5.5161

0 5.5161 0 )

 
 

   

C =

(

 
 

−12.3028 0 9.7315

0 −46.0501 0

9.7315 0 −98.9047)

 
 

   

III. For pipes pinned at one end and fixed at another end, the matrix B and C are, 

B =

(

 
 

0 −2.9965 0.3167

2.9965 0 −5.1468

−0.3167 5.1468 0 )

 
 

  

C =

(

 
 

−11.5126 4.2814 3.7993

4.2814 −42.8964 7.81913

3.7993 7.8191 −94.0376)
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IV. For pipe (cantilever), the B and C matrixes are, 

B =

(

 
 

2 −4.75948 3.78433

0.75948 2 −6.22218

0.21566 2.22218 2 )

 
 

  

C =

(

 
 

0.8581 −11.7433 27.4531

1.8738 −13.2942 −9.04205

1.56453 3.22935 −45.9043)

 
 

     

Using Eq. (24), after the reduced order through Eq. (23), the discretized equation is shown below, 

IQ̈ + 2Mru0BQ̇ + (CH + Λ)Q = 0                                                                                                         (25) 

Where, 

Q̈ = {

q̈1
q̈2
q̈3

},  

Q̇ = {

q̇1
q̇2
q̇3

},  

Q = {

q1
q2
q3
}  

When,  

Q̇ = Ωi, Q̈ = −Ω2,  

And, Eq. (25) become, 

[−IΩ2 + 2Mru0BΩi + (CH + Λ)]Q = 0                                                                                                (26) 

Or, 

[−IΩ2 + 2Mru0BΩi + (CH + Λ)] = S = (

s11 s12 s13
s21 s22 s23
s31 s32 s33

)                                                                 (27) 

Where, 

s11 = λ1
4 + Hc11 + 2Mru0b11Ωi − Ω

2  

s12 = Hc12 + 2Mru0b12Ωi  
s13 = Hc13 + 2Mru0b13Ωi  
s21 = Hc21 + 2Mru0b21Ωi  
s22 = λ2

4 + Hc22 + 2Mru0b22Ωi − Ω
2  

s23 = Hc23 + 2Mru0b23Ωi  
s31 = Hc31 + 2Mru0b31Ωi  
s32 = Hc32 + 2Mru0b32Ωi  
s33 = λ3

4 + Hc33 + 2Mru0b33Ωi − Ω
2   

By setting |S| equal to zero, it is possible to evaluate the natural frequency (Ω). The following characteristic 

equation comes from the expansion of determent above, 

Ω6 − k5Ω
5i − k4Ω

4 − k3Ω
3i − k2Ω

2 − k1Ωi − k0 = 0                                                                       (28) 

The constants 𝑘0 , 𝑘1 , 𝑘2 , 𝑘3 , 𝑘4 , 𝑘5 depend on the boundary conditions, and shown in Table 1. For 

Root-Locus analysis, the closed-loop transfer function for any feedback control system may be written in 

the factored form given in equation,  
C

R
(s) =

G(s)

1+G(s)H(s)
=

Kc(s−zc1)(s−zc2)…(s−zcn)

(s−pc1)(s−pc2)…(s−pcn)
                                                                                           (29) 

Where, s = pc1, pc2, … pcn are closed-loop poles, so called since their values make Eq. (29) infinite (Note 

that they are also the roots of the characteristic equation) and s = zc1, zc2, … zcn are closed-loop zeros, 

since their values make Eq. (29) zero. The position of the closed-loop poles in the s-plane determine the 

nature of the transient behaviour of the system as can be seen in Fig. 1. Also, the open-loop transfer function 

may be expressed as, 

G(s)H(s) =
K(s−z01)(s−z02)…(s−z0n)

(s−p01)(s−p02)…(s−p0n)
                                                                                                         (30) 
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Where z01, z02, … z0n are open-loop zeros and p01, p02, … p0n are open-loop poles.  

This is a control system design technique developed by W.R. Evans (1948) that determines the roots of the 

characteristic equation (closed-loop poles) when the open-loop gain-constant K is increased from zero to 

infinity. The locus of the roots, or closed-loop poles are plotted in the s-plane. This is a complex plane, 

since s = σ ± jω  It is important to remember that the real part σ is the index in the exponential term of 

the time response, and if positive will make the system unstable. Hence, any locus in the right-hand side 

of the plane represents an unstable system. 

The imaginary part! is the frequency of transient oscillation. When a locus crosses the imaginary axis, σ =
0. This is the condition of marginal stability, i.e. the control system is on the verge of instability, where 

transient oscillations neither increase, nor decay, but remain at a constant value. The design method 

requires the closed-loop poles to be plotted in the s-plane as K is varied from zero to infinity, and then a 

value of K selected to provide the necessary transient response as required by the performance 

specification. The loci always commence at open-loop poles (denoted by x) and terminate at open-loop 

zeros (denoted by o) when they exist. Eq. (28) and Eq. (30), By setting |S| equal to zero, it is possible to 

evaluate the natural frequency (Ω). Using Eq. (15), the characteristic equation for three modes. The 

constants k depend on the boundary conditions. Will be used to find the results of Root-Locus. 

Therefore, the analytical solution results calculated can be depending to analysis the control and stability 

for dynamic behaviour of pipe conveying fluid, since the analytical technique was agreement solution can 

be applied for different engineering structure with various parameters effect, [21-23]. In addition, can be 

comparison the analytical results with other numerical, [24-26] or experimental, [27-30], results calculated 

or also can be comparison the analytical results with previous results calculated by others researches, [31-

34], to given the agreement for presenting technique used.       

 

Table 1. Parameter Constants for Pipe with Various Boundary Conditions Supported. 
 

P
ar

am
et

er
 

C
o
n
st

an
ts

 

Pipe Supported  

Pinned-Pinned Clamped-Clamped 

k0 (−34609.9 𝐻
3 + 0.478222 ∗ 107 𝐻2 −

0.165195 ∗ 109 𝐻 + 0.119786 ∗ 1010
)    ( −51673𝐻3 + 0. 148296 ∗ 108 𝐻2 −

0. 120933 ∗ 1010 𝐻 + 0. 278330 ∗ 1011
)      

k1 0 0 

k2 (
+3436.55𝑀𝑟

2𝑢0
2𝐻 − 233439𝑀𝑟

2𝑢0
2 −

4773.04𝐻2 + 555683𝐻 −
0.132176 ∗ 108

)    (
+4481.05𝑀𝑟

2𝑢0
2𝐻 − 714029𝑀𝑟

2𝑢0
2 −

6243. 22𝐻2 + 0. 134854 ∗ 107𝐻 −
0. 648214 ∗ 108

)      

k3 0 0 

k4 (−138.175𝐻 + 9546.1 + 120.608Mr
2u0

2)     (−157. 258𝐻 + 18922 + 166. 388𝑀𝑟
2𝑢0

2)     
k5 0 0 

 Pipe Supported  

Clamped-Pinned Cantilever 

k0 (−43139.2H
3 + 0. 877896 ∗ 107 H2 −

0. 478995 ∗ 109 H + 0. 645029 ∗ 1010
)    (+441. 872𝐻

3 + 8265. 4 𝐻2 +
684784 𝐻 + 0. 228488 ∗ 108

)   

k1 (−0. 0613238TMru0 + 0. 005T
2Mru0)   (

−154473𝑇𝑀𝑟𝑢0 + 1835. 27𝑇
2𝑀𝑟𝑢0 +

(7604890 ∗ 107𝑀𝑟𝑢0)
)    

 k2 (
+4030.57Mr

2u0
2H− 416514Mr

2u0
2 −

5516. 43H2 + 887358H− 0. 303083 ∗ 108
)   (

+565.864𝑀𝑟
2𝑢0

2𝐻 − 123009𝑀𝑟
2𝑢0

2 −

567. 72𝐻2 + 69941. 7𝐻
−0. 190122 ∗ 107

)    

k3 (+0. 003TMru0 − 0. 001Mr
3u0

3)   (
+374. 357𝑇𝑀𝑟𝑢0 − 432. 196𝑀𝑟

3𝑢0
3

−34435. 5𝑀𝑟𝑢0
)    

k4 (−148. 447H + 13601. 8 + 142. 275Mr
2u0

2)   (
−58. 3405𝐻 + 4304. 44

+114. 502𝑀𝑟
2𝑢0

2 )    

k5 0 (+12Mru0)   
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Figure 1. Effect of closed-loop pole position in the s-plane on system transient response. 

 

3. Results and Discussion 

The Root Locus Theory draws a map to determine the location and paths of the roots of the characteristic 

equation. The root position is very useful in studying the active control system and the MATLAB 2018 

software will be used to map the root position. As a design engineer, it is important to know the root 

location for the purposes of designing an active control system that is successful. The root position can 

also be used to study the behavior of the roots of any algebraic equation with one or several parameters. 

All cases of pipe fixation which are (p-p), (c-p), (c-c) and cantilever pipe will be dealt with, 

I. Effect of the Hydraulic Damper Position 

Fig. 2, shows the locations, paths of the roots, the change in gain at each case, the stability, the overshoot, 

the location of the poles, the location of the zeros, the frequency of transient oscillation and the behavior 

of the system in general. This is done for various damper locations, with  uo = 1 , α = 0.01, and base 

width of hydraulic damper (Δξ = 0.1). For pin fixation on both sides, it is observed that the highest stability 

occurs at ξa = 0.353 with low frequency oscillation capacity. It is followed by stability at ξa = 0.488 and 

the lowest marginal stability is achieved at ξa = 0.647. Note that the location of the damper occurs at ξa =
0.488 in which the highest amplitude of the frequency of transient oscillation occurs. The results are almost 

identical to the fixation (c-p) pipe for the length of the large pipe in the subject of study, except for the 

approaching roots to the left in the chart, which means that the increased stability will be higher. As for 

the case of fixation (c-c) pipe, there is an approach to the roots to the left more than the previous two cases. 

This means an increased stability in this case, with an approximation in the frequency amplitude of the 

transition oscillation. The fixation cantilever pipe has the highest stability at ξa = 0.488 with high 

amplitude of the frequency of transient oscillation. The lowest stability occurs at ξa = 0.647 with average 

oscillation capacity compared to other locations, but the system in this case is about to collapse and fail. 

This is due to the position of the nearby roots on the right side of the chart. 

II. Effect of the Base Width of Hydraulic Damper 

Fig. 3, shows the locations, paths of the roots, the change in gain at each case, the stability, the overshoot, 

the location of the poles, the location of the zeros, and the behavior of the system in general. This is done 

with the same survival locations previously selected for the damper, with  uo = 1 , α = 0.01 , and damper 

location  ξa = 0.5. In the case of (p-p) pipe, the highest stability occurs at Δξ = 0.05 and the amplitude of 

the transition oscillation frequency is low at low frequencies and the amplitude rises at high frequencies. 

The overshoot rises as the frequency at Δξ = 0.05 the gain also rises with higher frequency and the 

marginal stability at Δξ = 0.2. The case (c-p) pipe has the highest stability at Δξ = 0.05 and is accompanied 

by the highest frequency amplitude. The case of (c-c) pipe is the highest stable at Δξ = 0.2 accompanied 

by a high amplitude with an oscillation frequency of transition. More stability than the previous two cases 

is noted and the roots of all Δξ approaches are to the left of the diagram. The case of cantilever pipe is 

somewhat close to all Δξ cases, with a high transitional amplitude. 
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a. P-P Pipe Supported. 

 
b. C-P Pipe Supported. 

 
c. C-C Pipe Supported 
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d. Cantilever Pipe Supported  

 

Figure 2. Root Locus at different damper positions. 

 

 
a. P-P Pipe Supported. 

 
b. C-P Pipe Supported. 
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c. C-C Pipe Supported 

 
d. Cantilever Pipe Supported  

 

Figure 3. Root Locus at different Δξ.  
 

III. Effect of the Damping 

Fig. 4, shows the locations, paths of the roots, the change in gain at each case, the stability, the overshoot, 

the location of the poles, the location of the zeros, and the behavior of the system in general, with uo = 1, 

ξa = 0.5 , and base width of hydraulic damper (Δξ = 0.15). 

For pin fixation on both sides, it is observed that the highest stability occurs at α = 0.3 with low frequency 

oscillation capacity. It is followed by stability at α = 0.2 and the lowest marginal stability is achieved at 

α = 0.1. Note that the location of the damper occurs at α = 0.3 in which the highest amplitude of the 

frequency of transient oscillation occurs. The case of (c-p) pipe has the highest stability at α = 0.3 and is 

accompanied by the highest frequency amplitude. As for the case of fixation (c-c) pipe, closed circular 

loops are created representing analogue stability. With respect to frequencies, there is an approach to the 

roots to the left more than the previous two cases. This means an increased stability in this case, with an 

approximation in the frequency amplitude of the transition oscillation. The fixation cantilever pipe has the 

highest stability at α = 0.3 with high amplitude of the frequency of transient oscillation. The lowest 

stability occurs at α = 0.1 with high oscillation capacity compared to other (α) and compared to other 

fixation cases. 
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a. P-P Pipe Supported. 

 
b. C-P Pipe Supported. 

 
c. C-C Pipe Supported 
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d. Cantilever Pipe Supported  

 

Figure 4. Root Locus at different α. 

 

IV. Effect of Pressure 

Fig. 5, shows the locations, paths of the roots, the change in gain at each case, the stability, the overshoot, 

the location of the poles, the location of the zeros, and the behavior of the system in general, with  α =
0.01 , and base width of hydraulic damper (Δξ = 0.1), ξa = 0.5.  

In the case of (p-p) pipe, the highest stability occurs at Π = 1 and the amplitude of the transition oscillation 

frequency is low at low frequencies and the amplitude rises at high frequencies. The overshoot rises as the 

frequency at Π = 1. The gain also rises with higher frequency and the marginal stability at Π = 4.5. The 

case of (c-p) pipe has the highest stability at Π = 1 and is accompanied by the highest frequency amplitude. 

The case of (c-c) pipe is the highest stable at Π = 1, accompanied by a high amplitude with a oscillation 

frequency of transition. More stability than the previous two cases is noted and the roots of all Π approaches 

are to the left of the diagram. The cantilever pipe becomes close to instability at a pressure of 4.5. 

 

 
a. P-P Pipe Supported. 
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b. C-P Pipe Supported. 

 
c. C-C Pipe Supported 

 
d. Cantilever Pipe Supported  

Figure 5. Root Locus at different Π. 
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4. Conclusion 

From the analytical solution for general equation of motion for pipe conveying fluid, to determine the 

dynamic stability of pipe by using root locus technique, can be listing the following impartment points,   

1. The results of the change of the parameters of each fixations, were compared with each control theory 

used and found a match in stability and response.  

2. In all types of pipes, increased speed leads to a decrease in natural frequencies and increase pressure. 

When the speed is increased, the control performance decreases due to the increased force of Coriolis. 

3. For critical speeds, the increase in pressure reduces those speeds for all types of fixings for pipes. Then, 

increase in pressure leads to the failure of pipe systems at certain limits if the results are not calculated 

with high accuracy. 

4. Increase the proportion of mass less critical speeds and all types of fixations for pipes. 

5. The increase in pressure for critical speeds, reduces those speeds for all types of fixings for pipes, 

increase the proportion of mass less critical speeds and all types of fixations for pipes. 
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