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Abstract 

The vibration characteristic of a cracked porous graded moving plate based on a neutral surface plane 

under uniform temperature rise is investigated in this paper. The material property gradient is based on the 

distribution of the power law in the direction of the plate thickness. The vibration equation is obtained 

depending on the classical plate theory (CPT), and resolved by the extension of the Differential quadrature 

approach (DQM). Furthermore, the mode shapes of the model are determined for simply supported moving 

graded plates with cracks. The present natural frequencies results are compared with those available in the 

published literature and a good agreement is found. The effect of key parameters such as plate velocity, 

crack length ratio, gradient index, and porosity on the dynamic characteristics of axial moving systems in 

addition to their physical interpretations is described. 

Copyright © 2022 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 

These instructions give you the guidelines for preparing papers for IJEE. Use this document as a template. 

To ensure publication quality and uniformity, the following requirements have been prepared to assist 

authors in preparing papers for the journal. If these requirements are not followed, papers will be returned 

for revision and re-submittal. 

Functionally graded (FG) thin plates with longitudinal motion have many applications in various 

engineering fields. These plates may be subjected to mechanical or thermal loads, and therefore defects 

may occur as a result of these loads. These defects can be in the form of a crack on the surface, an internal 

crack, or any type of defect. The presence of cracks in plate structures causes changes in their physical 

characteristics such as stiffness, mass, and consequently changes in vibrational characteristics, such as 

natural frequencies and the shape of modes. Therefore, analysis and knowledge of the behavior of these 

structures is of great importance. In this regard, very extensive studies on the vibration of FGM plates have 

been conducted by many researchers. For example, [1] analyzed the free vibration, and buckling of FGM 

thin plate based on the classical theory of the plate and the neutral surface position. A theoretical analysis 

was presented to find the vibration frequency and critical bucking loading. [2], studied the free vibration 

of a FGM rectangular plate based on the theory of first-order shear deformation. In this study, they 

examined four types of functionally graded materials. [3], studied the free vibrations of an exponential 
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graded rectangular plate in a thermal environment based on the classical theory of plates. Rayleigh-Ritz 

method was utilized to find vibration frequency.  

On the other hand, the appearance of small pores inside the functionally graded material (FGM) was 

observed during the preparation process, which had a significant impact on the physical characteristics and 

static and dynamic characteristics of FGM. Therefore, in recent years, it has attracted the attention of 

researchers in studying the effect of these pores on the mechanical behavior of FGM structures containing 

pores. For example, [4] used the finite element method to study the free vibration and static characteristics 

of the porous FG magneto-electric elastic plate. The modified mixing ratio formula is mainly used to 

analyze the influence of the porosity distribution on the structural performance of the plate and the effect 

on the vibration and static characteristics of the plate. The free vibrations of the porous rectangular plates 

were studied by [5]. Based on the TSDT and Hamilton's principle, the vibration equation were derived. An 

analytic solution with the application of Levi's solution was used to solve ordinary differential equations. 

The vibration characteristic of rectangular porosity FG plates was investigated by [6]. The equation of 

motion was derived based on Hamilton's principle and FSDT. According to the modified power law, the 

physical properties of the plate were graded in thickness direction were assumed. 

For axial moving structures, many researchers have done some research on plates made of traditional 

isotropic materials, but there are few studies on functionally graded material (FGM) plates with axial 

motion. [7], used the differential quadrature method to analyze the inherent characteristics of the 

viscoelastic axially moving plate. The relationship curves among the critical velocity, the dimensionless 

vibration frequency and the aspect ratio, the dimensionless motion speed, and the dimensionless stiffness 

of the four-sided simply supported axially moving thin plate was plotted. [8], based on the D'Alembert 

principle, vibration equation was derived for nonlinear vibration of axial movement FGM plate. The 

harmonic balance method are used to analyze the vibration frequency and nonlinear dynamic response of 

the plate under four-sided simply supported boundary conditions. [9], based on classical plate theory, the 

dynamic behavior of an axially moving plate under the influence of surrounding axial airflow has been 

studied. [10], based on D'Alembert principle, the equation of motion was derived taking into account the 

thermal effects and motion axially. Galerkin's methods and harmonic equilibrium were used to solve the 

ODE. [11], studied the vibration characteristics of axially moving plates partially immersed in fluid on the 

basis of classical thin plate theory. The results showed that the vibration characteristics are affected by the 

speed of movement as well as the fluid and plate density ratios. [12], used assumed mode method to study 

the vibration characteristics of the axially moving FGM plate with aero-thermal environment. Based on 

the classic plate theory and the Hamilton principle, the vibration equation were derived. [13], investigated 

the dynamic characteristic and stability of a thermoplastic coupling moving rectangular plate. The 

thermoplastic coupling differential equation for a moving plate was obtained by integrating the 

thermoplastic conduction equation. A new analytical model for free vibration analysis of a simply 

supported rectangular functionally graded sandwich plate was presented by [14]. Theoretical formulations 

are based on the classical plate theory to find the free vibration characteristics of the imperfect and perfect 

FGM sandwich plate. To validate the analytical solution, finite element analysis (FEA), as well as ANSYS-

2020-R2 software, were used. The results reveal that the frequency parameter of the sandwich plate 

increases with the increase of the porosity parameter and number of the constraints in the boundary 

conditions. [15] presented a new approximated analytical solution of the free vibration analysis of 

functionally graded rectangular sandwich plates with porosities. The kinematic relations were developed 

based on the classical plate theory (CPT), and the governing differential equation is derived by employing 

the Rayleigh-Ritz approximate method. The influences of changing the gradient index, porosity 

distribution, boundary conditions, and geometrical properties on the free vibration characteristics were 

analyzed. 

Additionally, the presence of cracks in plate structures causes changes in vibrational characteristics, such 

as natural frequencies and the shape of modes. Therefore, modeling defective structures in order to fully 

understand the nature of the defect, has caused increasing attention of researchers. Firstly, [16], studied the 

stress factor of a rectangular fracture plate under the simultaneous effect of tensile and flexural loads. The 

crack was considered as a local decrease in the stiffness of the plates, and the crack was modeled using 

tension and torsion springs. [17], investigated the vibrational behavior of cracked plates with intermediate 

cracks, of the desired direction and length. For this purpose, with the help of Kirchhoff's theory, the 

governing equations of the cracked plate were extracted, and then, a method of multi-scale was used to 

solve the obtained equation. [18] modeled the crack as a torsion spring, and the vibrational behavior of the 

rectangular plate with the overall crack was investigated. Open crack was assumed and the plate was 



International Journal of Energy and Environment (IJEE), Volume 13, Issue 1, 2022, pp.27-44 

ISSN 2076-2895 (Print), ISSN 2076-2909 (Online) ©2022 International Energy & Environment Foundation. All rights reserved. 

29 

divided into two parts along the crack. Then, by applying the appropriate boundary conditions, the 

differential equations of the vibrations of each part of the plate were extracted. [19], presented an analytical 

solution to find the vibration frequency of crack isotropic composite plates. The natural frequency of the 

powder- and short-fiber-reinforced composite was investigated. [20], investigated the dynamic behavior 

of moving Rayleigh graded beam with an edge crack. Hamilton's precept was used to obtain the motion 

equation of the system. A rotational massless spring was used to model the crack. [21], investigated the 

thermal effects on the vibrations of the rectangular isotropic plate. Using classical plate theory and Burger's 

nonlinear formula, they investigated the effects of crack-temperature bonding on dynamic properties. [22], 

predicted the frequency of an FGM plate with evenly distributed porosity and a lateral superficial crack 

simply supported FGM plate. The FGM plate motion equations were derived using TSDT.  

In light of the above reviews, and to the best of the author's knowledge it was noted that the dynamic 

behavior of a cracked porous gradient plate with axial motion has not yet been studied. Therefore, the 

importance and novelty of this study lies in the study of free vibrations of porous cracked plates which is 

a new topic in this field. Since both crack and porosity influence the vibration characteristics of a moving 

FGM plate, the current study attempts to demonstrate these effects. In this work, the classical plate theory 

with the concept of a neutral normal surface was used to derive the equation of motion. The obtained 

vibration equation is solved using the differential quadrature method. The effects of several variables on 

vibration properties were observed, including porosity, crack length, axial velocity, and material property 

gradient index. 

 

2. Mathematical Formulation 

Figure (1) displays a schematic diagram of the moving graded thin plate. Set its length as 1l , width as 2l , 

and thickness as h . It moves longitudinally with uniform speed V . a2  is the crack length, and dC  is the 

crack depth. In this study, the volume fraction, in the plate thickness, is constantly changing. Depending 

on the power-law gradient, the volume ceramic fraction is [23],  
 

k0.5)(z/hcV                                                                                                                                        (1) 

 

Where, (k ≥ 0) is the material composition index. The effective material properties of porous plates with 

even porosities (i.e. equivalent elastic modulus )(zE , thermal expansion coefficient )(z , mass density

)(z , can be expressed as, [24],  
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Figure 2 exhibits the contrast of perfect FGM and FGM with porosity 2.0 versus the direction of 

plate thickness for different index gradients. From this figure, it can be seen that porosity FGM has a lower 

Young's modulus as compared to a perfect FGM. 

Based on the classic thin plate small deflection deformation theory, ignoring the influence of transverse 

shear strain, and taking the neutral surface of the plate into account, the displacement field at any point of 

the FGM plate is, 
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w
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Where, u, v, and w respectively denote the neutral displacements of the plate along x, y, and z axes, and 

oz is presented to explain the neutral position, given by [1], 
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Figure 1. FG porous moving plate model. 

 

  
                                                      (a)                                                              (b) 

 

Figure 2. Perfect and porous FGM Young’s modulus variations with 2.0 2.0) ka ;  2) kb . 
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So, neglecting a temperature environment, the strain related to the displacement above can also be rewritten 

as, 
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In which x  and y are the normal strains, and xy  is the in-plane shear strain. By assuming that the 

material components of the FG plate comply with Hooke's generalized law, the stress-strain constitutive 

relationship of the axially moving FGM thin plate is, 
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2.1. Formulation of in-plane forces and moment 

In absence of temperature, Figure 3 shows the internal forces and bending moments that affect the FG thin 

plate element. After analyzing the forces in the z-direction and bending moment in x, y-direction, taking 

equilibrium in the x and y-axis, as well as simplification, neglecting the higher-order quantity, the moment 

equations in the x, y-direction,  can be written as, 
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The total derivative of the right-side term due is written as [11], 
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Figure 3. Physical model of the functionally graded plate with axial motion. 

 

In the case of temperature, the membrane force due to temperature change shown in Figure 4 that affects 

the thin plate element FG is taken into account. Since the in-plane shear strength of the thin sheets is not 

affected by the temperature change, so the shear force is ignored [21]. Thermal stress coefficients under 

uniform temperature rise, for the FG thin plate, can be explicit as [21], 
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Using the thermal stress parameters above, the moments in terms of w  is written as, 
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For in plane temperature force, consider the plate element's equilibrium dxdy  as depicted in Figure 4. In 

this work, the equilibrium adopted by [21] is used for in-plane temperature compressive forces. By taking 

the equilibrium in the z-axis, ignoring the higher-order conditions, the in-plane transverse forces are written 

as, 
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Where yN   is the additional crack membrane force [25].  The in-plane forces due to the uniform 

temperature rise 
TxN and

TyN , are given as, 
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By adding of the forces given by Eq. (13) and substituting the moments Equation (12) into Eq. (9), the 

vibration equation of cracked FG plate as, 
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Figure 4. Plate element in-plane thermal forces with 2a-length crack. 

 

Substituting Eq. (10) into Eq. (15), the vibration equation of cracked FG plate is written as, 
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2.2. Crack terms equation 

Several studies about the plates exposed to cracks, as well as the modeling of these cracks, have been 

presented by a number of researchers and one of the most important modeling methods are those presented 

by [26, 27] which are represented by crack representation based on the spring line model (LSM) and, 

consequently, the internal forces and moments that occurred as a result of which the cracks were added. 

Figure 5 shows, on both sides of the crack site, the stress rs  and the bending stress rsm , respectively. 

The equations for these stresses are written as [17], 
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The  tensile and bending stresses relationship in the plate afar sides ( rsmrs , ) and the location of the 

crack ( rsmrs , ) is obtained as follows  [26], 
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The tensile strength and moment due to a crack can be expressed along the y-axis, 
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Figure 5. Tensile and bending stresses on the plate for a 2a part-through crack. 

 

As a result of reducing of the total stiffness caused by crack, equations (18) are added with a negative sign. 

These two terms are given as follows [24, 26], 
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The compliance coefficients are proportional to the crack depth ratio hdC / , and they disappear when

0dC . The required compliance coefficient expressions are as follows [26], 
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It is noted that these above expressions are only valid for values of 7.01.0   and in the existing 

model 6.0  is taken. After replacing Eqs. (19) and (20) into Eq. (16), the cracked plate vibration 

equation is, 
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The effect of thermal bending moment is ignored (i.e.  0TM ) in this work. Then, the final vibration 

equation for the porosity of the cracked FGM plate under the influence of the thermal environment and 

moved horizontally is written as follows, 
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The boundary conditions of the plate with four edges simply supported are as follows, 
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To simplify the governing equations and before resolving its, the following parameters (dimensionless) are 

used, 
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Substituting these quantities (dimensionless) into Eq. (25), the vibration equation (dimensionless), yields, 
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It is noteworthy that the formula in equation (29), after neglecting thermal parameter, velocity, and physical 

gradient effect is similar to that suggested by [28], respectively, for isotropic plate. For boundary 

conditions, the dimensionless form is obtained by substituting Eq. (28) into Eq. (27) gives, 
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Assume the solution of equation (29) that satisfies boundary condition Eqs. (30 and 31) be, 
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Substituting equation (32) into equation (29), and after rearranging get, 
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The boundary condition in Eqs. (31) now be expressed as, 
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3. Solution Method 

The Differential Quadrature (DQM) Method was utilized as a numerical method for solving the vibration 

equation (Eq. (33)) as well as the boundary conditions associated (Eq. 34). The essential idea of DQM is 

to approximate the thr derivative of a function with the value of a weighted sum of the function at all 

sampling points [29], 
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Where: 
)(r

ijA is the thr  order weight coefficient; jf  is the function value of the function at 
i

x ; n  is the 

number of grid points. Then the derivatives of the modal function with respect to the axial coordinates can 

be expressed as, 
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The non-uniform grid points are used to divide the axial direction. At the same time, in order to deal with 

the boundary conditions, the  method [29] is introduced, and two grids with a distance of  (about 410

~ 610 ) from the end points are added at the nodes at both ends, 
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According to the interpolation principle, the Lagrange polynomial is used to determine the weight 

coefficient [17], and the first-order weight coefficient expression can be obtained, 
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The governing equation (Eq. 33) for free vibration of FG porous moving plate with crack can be converted 

into the following expression by substituting the weighting coefficients of required derivatives using DQM 

above, 
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The DQ-discretized form of the boundary conditions (34) are, 
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By utilizing DQM, equation (39) can be converted into assembled form as, 
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Subscripts b and d represent boundary and internal nodes, respectively. Where K, C, and M are stiffness, 

damping, and mass matrices respectively.. Ŵ  is a dynamic displacement vector defined by, 
 

teWW ˆ                                                                                                                                    (42) 
 

The standard generalized eigenvalue problem is obtained by substituting Eq. (42) into Eq. (41) as follows, 
 

  0ˆ2  WMCK                                                                                                                            (43) 

 

The nontrivial solution of Eq. (43) is obtained by equating determinant of coefficient matrix in Eq. (43) to 

zero, 
 

  0det 2  MCK                                                                                                                          (44) 

 

The natural frequencies   which are complex numbers iir   can be found using the MATLAB 

program through solving the characteristic equation referred to in Equation (44). The real parts of the 

system frequency are related to the vibration frequency while the imaginary parts indicated the damping 

coefficient of the system. 

 

4. Numerical Analysis and Discussion 

In this section, the theoretical results of moving FG porous cracked thin plate obtained by solving the 

governing equation (44) with associated boundary conditions using the DQM approach are presented and 

discussed. The dimensions and properties used in numerical results for FG plate are taken as follows [30]: 

The FGM plate used in this study is composed of aluminum and alumina materials. It is assumed that the 

FGM plate is made of aluminum metal (k=∞) and alumina ceramics (k=0).  Their materials properties are 

given as: 3800c
3/ mkg , 2707m  3/ mkg , 380cE GPa , 70mE GPa , 

164.7  Kec and 1623  Kem , the geometry of the FGM plate is length )11( ml  , width 

)12( ml  and thickness )01.0( mh . This is a thin plate because the width-to-thickness ratio is

100/1 hl . The Poisson ratio is considered as a constant value )3.0( v . 

 

4.1. Validation 

Some of the theoretical results are compared with published results that have the same parameters for 

validation of the present method. Table 1 compares the natural frequencies of FGM plate calculated in this 

paper (DQM) with the results of those reported by [31] for FG plates using (DSM) under (SSSS, and 

CSCS) boundary conditions with different aspect ratio.  The calculation results in this paper are very close 

to those in the exhibited in Ref. [31].  In this work, The natural ( ) frequency (dimensionless) values are 

defined with respect to the ceramic material as cDhcl /2
1   . 

Another validation between the results of the current study using (DQM) was performed with the results 

obtained by Ref. [32], using the Galerkin method for SSSS isotropic plate as shown in Table 2 with 

different crack length ratios )2.00/2( 1  lalc . The material properties of the isotropic plates are taken 

as 207E GPa,  = 0.3, and 7850  3/ mkg . The present results of SSSS plates are very close to 

those obtained [32]. 

 

4.2. Parametric analysis 

The above two comparative examples verify the reliability and effectiveness of the calculation method in 

this study. The following analysis analyzes the FGM plate on (SSSS) boundary conditions. The influence 

of the material composition index k, the axial movement speed u, the aspect ratio, thermal load parameter, 

porosity parameter, crack length ratio and other factors on the free vibration frequency and stability of the 

axially moving cracked porosity FGM plate are presented separately. 
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I. Effect of the Flow Velocity 

In this subsection, the impact of moving speed on stability and dimensionless complex frequency of 

cracked porous moving FG plate was studied. Firstly, Table 3 present the dimensionless vibration 

frequency as a function of the dimensionless speed movement for moving cracked porosity FG plate, 

respectively. The results are computed for the case 𝛽 = 0.2, 𝜆 = 1; 𝜆𝑇 = 0 and 𝑙𝑐 =
2𝑎

𝑙1
= 0.2. As shown 

from this table, with increasing of u the results of the first three vibrations frequency decreased (i.e. the 

natural frequencies of moving FG plate is dependent on the velocity (u) movement). For example, for SSSS 

moving FG plate as the speed (dimensionless) rises from 0 to 2, the frequency of the first mode vibration 

lowers by 26.104% and the percentage decrease for the second mode is 7.018% while for the third mode 

the percentage decrease for the frequency vibration is 2.98%.  

At the same time, we can see from the results that, by increasing the movement speed (without dimensions) 

from 2 to 3, the vibration frequency first-order decreases by 55.407% for SSSS moving FGM plate and 

thus the gradient rate increases dramatically. Through the foregoing, we note that increasing the speed of 

the axial movement to the instability of functionally graded plate so when designing these types of systems 

it is necessary to choose the appropriate speed to maintain the system stability by taking into account the 

effect of reducing the speed on the structure stiffness. 

 

Table 1. A comparison of first three dimensionless natural frequency with different aspect ratio for FG 

plate. 
 

Mode source S-S-S-S 

       k=0 k=0.5 k=1 k=2 

(1,1) 

 

0.5 

DQM 12.3370 10.4463 9.4131 8.5581 

DSM [31] 12.3370 10.4463 9.4131 8.5581 

 

1 

DQM 19.7392 16.7141 15.0609 13.6930 

DSM [31] 19.7392 16.7142 15.0610 13.6931 

 

 

(1,2) 

 

0.5 

DQM 19.7392 16.7141 15.0609 13.6930 

DSM [31] 19.7392 16.7142 15.0610 13.6931 

 

1 

DQM 49.3480 41.7853 37.6524 34.2326 

DSM [31] 49.3480 41.7854 37.6524 34.2326 

 

 

(1,3) 

 

0.5 

DQM 32.0762 27.1605 24.4740 22.2512 

DSM [31] 32.0762 27.1605 24.4741 22.2512 

 

1 

DQM 98.6960 83.5707 75.3048 68.4653 

DSM [31] 98.6960 83.5707 75.3048 68.4653 

 

Table 2. Non-dimensional natural frequency mn  for cracked SSSS isotropic plates. 
 

Soni et al. [32] 

(Galerkin method) 

Present  Works  

DQM 

Crack length ratio  

(2𝑎/l1) 
mn

 

19.739 19.7392 0.00 

(1,1) 
19.274 19.2741 0.02 

18.163 18.1635 0.10 

17.563 17.5633 0.20 

49.348 49.3480 0.00 

(2,1) 
46.706 46.7058 0.02 

40,560 40,5592 0.10 

36.897 36.8964 0.20 

49.348 49.3480 0.00 

(1,2) 
49.018 49.0180 0.02 

48.313 48.3131 0.10 

47.936 47.9361 0.20 

 

II. Effect of gradient index 

This subsection demonstrates the effect of the power-law exponent with various parameters on the natural 

frequencies of moving cracked porous FGM thin plate. First, Figure 6 presented the first three 
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dimensionless natural frequencies of the FGM plate with the end conditions (simple–simple–simple–

simple) at 𝑢 = 1, 𝜆 = 1, 𝛽 = 0.2, 𝑙𝑐 = 0.2, 𝜆𝑇 = 0. The results showed that the natural frequencies of the 

FGM plate are inversely proportional to the gradient index. The decrease in frequencies is due to the fact 

that an increase in the gradient index means a decrease in the material of the ceramic relative to the metallic 

substance inside the plate, and the fact that the metal has a lower modulus of elasticity than the modulus 

of elasticity of the ceramic which makes the plate more flexible (i.e. the stiffness of the plate decreases), 

which leads to a lower at natural frequencies. 
 

Table 3. First three lower frequencies versus movement speed of porous FG plate. 
 

B.C u Mode 

(1,1) (1,2) (1,3) 

SSSS 0 11.74074 33.2463 68.8937 

1 11.1431 32.7094 68.4095 

2 9.3103 31.0660 66.9467 

3 5.99093 28.2032 64.4708 
 

 
 

Figure 6. Impact of power-law exponent on first three real modes of vibration. 
 

The influence of the material composition index k on the first and second order vibration frequency of the 

SSSS moving FGM porous plate with different crack length ratios (𝑙𝑐 = 2𝑎/𝑙1 = 0, 0.1, 0.2, 𝑎𝑛𝑑 0.3) is 

depicted in Figure 7. In this calculation, let us, 1u ; 1 ; 2.0 ; and 3T . From the plot 

results in Figure 7, the vibration frequency of the plate gradually decreases with the increase of the material 

composition index k. This is because the rigidity of metallic materials is relatively small compared to that 

of non-metallic materials, and the content of metallic materials increases with the material composition 

index while the contents of ceramics decrease. This, in turn, leads to a gradual decrease in the overall plate 

rigidity and subsequently a decrease in the frequency of vibration. On the other hand, we note that when 

the length of the crack is equal to zero, the highest frequencies can be obtained. The natural frequencies of 

the cracked FGM plate decrease with the increase in the crack length, which means that the increase in the 

crack length leads to a decrease in the stiffness of the plate structure and thus a decrease in the natural 

frequencies of vibration for both cases of support. 

The effect of volume fraction exponent (k) and moving speed on the first natural frequency of FGM plate 

for two end conditions with 2T ; 1 ; and 2.0/2 1  lalc are shown in Table 4 and Figures (8, 

a, b and c) . The result indicates that the increase for the moving speed leads to a decrease in natural 

frequency values for each boundary condition. Also, the vibration frequency of FGM plate will decrease 

with the increase in the exponent of volume fraction k. The results indicate that the vibration frequency of 

the FGM plate will increase as the gradient index k increases. For example, for u = 1, porosity index = 0.1 

and the SSSS end conditions, the vibration frequency (non-dimensional) decreases from 12.8104 to 8.9672 

for (k = 0.5 and k = 2, respectively) (i.e., the percentage drop is 42.858%), while the percentage decrease 

in vibration frequency for (k = 2 and k = 5) is 8.40%. It is evident from the results that the vibration 

frequency decreases rapidly at first with increasing gradient index and then gradually slows down. The 

reason for this is that aluminum content in FGM plate increases, whilst the alumina content decrease with 

an increasing the exponent, and the alumina Young’s modulus is frequently greater than that from 

aluminum. 



International Journal of Energy and Environment (IJEE), Volume 13, Issue 1, 2022, pp.27-44 

ISSN 2076-2895 (Print), ISSN 2076-2909 (Online) ©2022 International Energy & Environment Foundation. All rights reserved. 

40 

 
 

Figure 7. The first and second modes of SSSS FGM plate against exponent k for different values of crack 

length ratio. 

 

Table 4. Gradient index effect on first frequency of SSSS FG plate with different porosity parameter and 

moving velocity. 
 

 

u 

 

  

k 

0 0.5 1 2 5 10 

0 

0 16.4865 13.1061 11.4013 10.092 9.6402 9.3938 

0.1 16.9871 13.3283 11.3445 9.6635 9.0212 8.8759 

0.2 17.5362 13.5320 11.1532 8.8250 7.64593 7.6476 

1 

0 16.0597 12.5842 10.8087 9.4298 8.9434 8.6764 

0.1 16.5696 12.8104 10.7444 8.9672 8.2719 8.1095 

0.2 17.1294 13.0178 10.5385 8.0603 6.7602 6.7510 

2 

0 14.7670 14.7670 10.9863 7.3518 6.74747 6.4084 

0.1 15.3072 11.2288 8.8919 6.7746 5.8877 5.6675 

0.2 15.8990 11.4496 8.6400 5.6149 3.8022 3.7739 

  

 

 
 

Figure 8. First mode frequency variation of SSSS FG plate with gradient index and   porosity for 

different moving speed. 
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The effect of the exponent power-law and the porosity parameter of FG plate in different crack length ratio 

SSSS of the boundary conditions are given in Table 5. The flexure rigidity and elasticity of the graded 

plates decreases with the increase in the power-law exponent, and because the vibration frequencies are 

directly proportional to these coefficients. Therefore, an increase in the power-law exponent leads to a 

decrease in vibration frequencies as shown in the Table 5. Moreover, the first dimensionless frequency 

variance of SSSS FG plate with gradient index, porosity parameters and for different values of crack length 

are shown in Figure 9. From these figures it is clear that when the power law exponent is less than 1 

approximately, the frequency increases with the increase of the porosity coefficient, while when the 

gradient index is approximately more than 1, the frequencies decrease with increasing porosity. Also, the 

results indicate that the increase in the crack length ratio leads to a decrease in natural frequency values 

for each boundary condition. 

 

Table 5. Gradient index effect on first frequency of SSSS FG plate with different porosity parameter and 

moving velocity. 

 

1/2 la   
k 

0 0.5 1 2 5 10 

lc=0 

0 18.3127 14.6626 12.7740 11.2858 10.6941 10.3629 

0.1 18.8074 14.8372 12.6271 10.7066 9.8777 9.6429 

0.2 19.3582 14.9921 12.3259 9.6517 8.1645 8.0644 

lc=0.1 

0 16.9559 13.4205 11.6047 10.1855 9.6556 9.3620 

0.1 17.4573 13.6233 11.5047 9.6744 8.9243 8.7311 

0.2 18.0110 13.8071 11.2584 8.7075 7.3326 7.2834 

lc=0.2 

0 16.0597 12.5842 10.8087 9.4298 8.9434 8.6764 

0.1 16.5696 12.8104 10.7444 8.9672 8.2719 8.1095 

0.2 17.1294 13.0178 10.5385 8.0603 6.7602 6.7510 

 

 

  
 

 
 

Figure 9. First mode frequency of SSSS FG plate with gradient index and porosity for crack length ratio. 
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III. Crack length ratio effect 

The effect of crack length ratio ( cl ) and porosity (  ) index on the frequencies (non-dimensional) of 

FG plate with two boundary conditions and thickness 100/1 hl   is demonstrated in Table 6 and Figure 

10. In the calculation, let (𝑘 = 1, 𝜆 = 1, 𝑢 = 1, and ∆𝑇 = 0). From the results presented in this table and 

figure, it is seen that for constant porosity that frequency decrease with increasing crack length (𝑙𝑐) ratio. 

Also, it is noted that as the porosity parameter (𝛽) increases, the vibration first frequency decreases with a 

constant length crack ratio. This is because the increase in the percentage of porosity and the length of the 

crack increases the local flexibility, and then there is a decrease in the stiffness of the plate. 

 

Table 6. Impact of crack length ratio of vibration frequency with different porosity parameter. 

 

B.C.   
lc 

0 0.1 0.2 0.3 0.5 

 

SSSS 

0 14.5505 13.5963 12.9791 12.5460 11.9768 

0.1 14.2032 13.2695 12.6655 12.2416 11.6844 

0.2 13.7029 12.7986 12.213 11.8029 11.2631 

0.3 12.9388 12.0792 11.5229 11.1323 10.6188 

 

 
 

Figure 10. First mode frequency variation for moving FG plate versus crack length ratio under different 

porosity factor; for SSSS. 

 

Table 7 and Figure 11 show the crack length ratio 𝑙𝑐 and gradient index 𝑘 effects on the first-order natural 

frequency of SSSS FGM plate.  From the results is exhibited that the increase in crack length leads to a 

decrease in frequency. The stiffness of the plate decreases in the presence of the crack, and thus the 

frequencies decrease because the length of the crack is in the opposite sense of the frequency, and the crack 

increases the local flexibility. Moreover, it is noticed that the frequency decreases with increasing (k) 

gradient index. This can be expounded by the increase in the volume fraction of the metallic as a result of 

the stiffness reduction. It can also be seen that the decrease in the frequency is due to the combined effect 

of increasing the crack length, and gradient index. 

 

Table 7. Effect of the crack length ratio, the gradient index on the first (dimensionless) frequency for FG 

plate ( 0T ; ;1u 1 ; and 2.0 ). 

 

BC k lc 

0 0.1 0.2 0.3 0.5 

 

 

 SSSS 

 

0 19.9810 18.7016 17.8749 17.2952 16.5340 

0.5 16.1704 15.1201 14.4410 13.96459 13.3386 

1 13.7029 12.7986 12.2136 11.8029 11.2631 

2 11.1548 10.3981 9.9081 9.5637 9.1107 

5 9.4915 8.8285 8.3985 8.0961 7.6977 
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Figure 11. Crack length ratio, the gradient index impact on the first (dimensionless) frequency for (SSSS) 

FG plate movement. 

 

5. Conclusion 

The free vibration of the axially moving porous FGM thin plate with cracks is analyzed in this article. 

Based on the classical plate theory, the motion equation of the axially moving FGM plate is derived, and 

differential quadrature methods are used to solve the vibration equation. The reliability and effectiveness 

of the calculation method in this article are verified by comparison examples. The influence of axial motion 

speed, crack length ratio, material composition index on the vibration frequency are discussed through 

parameter analysis. The result analysis shows, 

1. For porous FG plates with axial motion and crack, increasing the porosity index first yields an increase 

in vibration frequency for a small value of k, then this trend becomes opposite for upper values of 

gradient index k.  

2. Compared with the intact moving FG plate, the crack length of the cracked moving FG plate reduces 

the critical buckling speed and coupled-mode flutter of the FGM plate. The greater the crack length, the 

lower the critical buckling speed and coupled-mode flutter of the FGM plate. The faster the plate will 

undergo flutter instability, mainly because the crack reduces the overall stiffness of the FGM plate.  

3. As the length of the crack increases, the stiffness of the plate decreases due to the energy released by 

the crack sites, and thus the vibration plate's frequency decreases.  

4. The stability of axially moving plates is highly dependent on the variation in axial speed. With an 

increase in the speed of movement, the frequency of vibration decreases faster. Hence, system 

instability occurs as a result of increased speed. 
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