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Abstract 
This paper presents the design of an on-line training fuzzy neural network (FNN) using back-propagation 
learning algorithm with particle swarm optimization (PSO) regulating controller for the induction 
generator (IG). The PSO is adopted in this study to adapt the learning rates in the back-propagation 
process of the FNN to improve the learning capability. The proposed output maximization control is 
achieved without mechanical sensors such as the wind speed or position sensor, and the new control 
system will deliver maximum electric power with light weight, high efficiency, and high reliability. The 
estimation of the rotor speed is designed on the basis of the sliding mode control theory. 
Copyright © 2011 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 
Wind energy conversion system (WECS) can be found in standalone, hybrid, and grid-connected 
topologies. The system is highly nonlinear, and a nonlinear control strategy is required to regulate the 
system for optimal generation. Besides various wind speeds, the effectiveness could be further 
downgraded with WECS uncertainties. A maximum power point tracking (MPPT) control is required to 
achieve optimum wind energy utilization and maintain the maximal aerodynamic efficiency. In order to 
implement maximum wind power extraction, the wind turbine generator must be operated in the 
variable-speed variable-frequency mode. 
Artificial neural network (ANN) are particularly useful to implement nonlinear time-varying input-output 
mapping. In the past, ANN has been applied for various control, identification, and estimation schemes in 
power electronics and drives. The ANN-based PWM has advantages of fast parallel computation, 
learning capability, and fault tolerance, which are not possible by standard PWM implementation 
methods [1]. Once well trained, the ANN controller could replace the conventional controller with the 
advantages of increased speed of execution and fault tolerance. ANN can be used to identify and control 
nonlinear dynamic systems because they can approximate a wide range of nonlinear functions to any 
desired degree of accuracy.  



International Journal of Energy and Environment (IJEE), Volume 2, Issue 5, 2011, pp.877-886 

ISSN 2076-2895 (Print), ISSN 2076-2909 (Online) ©2011 International Energy & Environment Foundation. All rights reserved. 

878 

Wind generation can operate in constant speed or variable speed mode by using power electronic 
converters. Variable speed generation is attractive because of its characteristics to achieve maximum 
efficiency at all wind velocities. However, this system requires a rotor speed information for vector 
control purposes. In this paper, we propose a new rotor speed observer with on-line training fuzzy neural 
network (FNN) [2-4] controller, and an integral switching surface is designed for the sliding mode speed 
observer to ensure the stability and robustness under noisy environment. The optimal rotor speed is 
determined by using the estimation technique [5-6]. Those control strategies can enhance the robustness 
of the system to capture the maximal wind energy without using the wind speed sensor and improve the 
dynamic performance [7-8]. It can be seen that a proper design of FNN controller with sliding mode 
speed observer can yield robust performance under parameter variations and is superior to traditional 
linear control techniques. 
 
2. Wind turbine characteristics 
In order to capture the maximal wind energy, it is necessary to install power electronic devices between 
the WT and the grid where frequency is constant. The input of a wind turbine is the wind and the output 
is the mechanical power turning the generator rotor. The output mechanical power available from a wind 
turbine could be expressed as 

32),(
2
1

ωβλπρ VRCP pm =  (1) 

where ρ is the density of the air ( 3m/kg ) , R is the radius of the blade, β  is the pitch angle of the WT 
blade. ωV is the wind speed ( sec/m ) , and pC  is called the power coefficient, and is given as a 
nonlinear function of the parameter λ  with 

ω

ω
=λ

V
Rr  (2) 

where rω  is the rotational speed. Usually pC  is approximated by 3
3

2
21 λβ+λβ+λβ= )(c)(c)(cC p , 

where )(c β1 , )(c β2 , and )(c β3 are constructive parameters for a given turbine. t the point 

optλ , maxpp CC = , the maximal power can be captured. It can be seen that maxpC , the maximum value 
for pC , is a constant for a given turbine. The dynamic performance of WT could be described as [8] 

erm
r TBT

dt
d

J −ω−=
ω  (3) 

where J is the inertia moment of WT, eT  is the electromagnet moment of the generator, and B is the 
friction coefficient.  
 
3. Design of FNN control system based on PSO algorithm 
3.1 System configuration 
The model of such a system is well described in many books and papers [9]. The proposed configuration 
of a field-oriented IG drive system is shown in Figure 1 which consists of an IG, a current-controlled 
PWM voltage source converter (VSC), a field-orientation mechanism, including the coordinate 
translator, and a speed control loop. Note that a sliding mode flux observer is proposed in this figure 
above the speed observer block to provide more accurate rotor speed, and a FNN is proposed to find the 
current control law *

qsi . By using the reference frame theory and the linearization technique, the field-
oriented induction generator system can be reasonably represented , in which 

*
qste iKT =  (4) 

( )( ) *
dsrmpt iL/L/nK 243= , and *

qsi is the torque current command generated from the speed controller, 

and *
dsi is the flux current command. 
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Figure 1. Block diagram of direct field-oriented IG control system 
 
3.2 Fuzzy Neural Network (FNN) with PSO algorithm 
A four-layer neural network as shown in Figure 2 is adopted to implement the proposed FNN controller 
[10-11]. Nodes in layer one are input nodes which represent input linguistic variables. Nodes in layer two 
are membership modes which act like membership functions. Each membership node is responsible for 
mapping an input linguistic variable into a probability distribution for that variable. The rule nodes reside 
in layer three. Altogether, the layer three nodes form a fuzzy rule base. Layer four contains the output 
variable nodes. This is a simple fuzzy logic system implemented by using a multi-layered feed-forward 
neural network. The FNN controller is proposed, and the control law is defined as 

p
*
qs ui =  (5) 

where pu  is generated from the FNN controller, and the FNN input is )1(
1x  and )1(

2x  of the first 
layer, where eˆx r

*
r

)( =ω−ω=1
1  and ex &=)1(

2  in this study. 
 
3.2.1 Basic nodes operation 
Layer 1: Input layer 
The nodes at this layer are used to directly transmit the numerical inputs to the next layer. That is, for the 
ith node of layer 1, the net input and output are represented as 
 

)1()1(
ii xnet = , ( ) )1()1()1()1(

iiii netnetfy == 21,i =  (6) 
 
Layer 2: Membership layer 
In this layer, every node performs a membership function. The Gaussian function, a particular example of 
radial basic functions, is used here as a membership function. We have 

( )
( )

2

2

)2(
)2(

ij

iji
j

mx
net

σ

−
−= ,  

( ) ( ))2()2()2()2( exp jjjj netnetfy == n,...,j 1=               (7) 

where ijm  and ijσ  denote respectively, the mean (or center) and the standard deviation, STD, of the 

Gaussian function in the jth term of the ith input linguistic variable )2(
ix  to the node of layer 2. The 

weights between the input and membership layer are assumed to be unity. 
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Layer 3: Rule layer 
This layer implements the related links for the term node and rule nodes. In other words, the links in this 
layer are used to implement the antecedent matching. The matching operation or the fuzzy AND 
aggregation operation is chosen as the simple PRODUCT operation instead of the MIN operation [3]. 
Then, for the kth rule node we have 

)3()3()3(
jjkjk xwnet Π= ,  

( ) )3()3()3()3(
kkkk netnetfy ==  (8) 

where )3(
jx  represents the jth input to the node of layer 3, and )3(

jkw  is also assumed to be unity. 
 
Layer 4: Output layer 
This layer performs the defuzzification to get numerical outputs. The overall net output is a linear 
combination of the consequence of all rules. If we use the centre-of-area (COA) defuzzification, the net 
input and output of the jth node in this layer are defined by 

)4()4()4(
kkoko xwnet Σ= ,  

( )
∑

=

k
k

oo
o x

netf
y )4(

)4()4(
)4(  (9) 

We need to note that the adopted FNN here must be non-normalized. That is, the operation in layer 4 are 
defined as 

( ) poooo unetnetfy === )4()4()4()4(  (10) 

where the connection weight )4(
kow is strength of the oth output associated with the kth rule, and is 

designed to be an adaptively learning parameter.  

 
 

Figure 2.  Architecture of the FNN 
 
3.2.2 Supervised learning and training process 
Once the FNN has been initialized, a supervised learning law is used to train this system. The basis of 
this algorithm is gradient descent. The derivation is the same as that of the back-propagation (BP) 
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algorithm. It is employed to adjust the parameters of the FNN by using the training patterns. By recursive 
application of the chain rule, the error term for each layer is first calculated. The adaptation of weights to 
the corresponding layer is then given. 
The purpose of supervised learning is to minimize the error function E expressed as  

( )2
2
1

r
*
r ˆE ω−ω=  (11) 

where *
rω  and rω̂  represent the rotor speed reference and estimated rotor speed of the generator. 

 
Layer 4: Update weight 
At this layer, the adjusted weights are )4(

kow . The error term to be propagated is given by 
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Then the weight )4(
kow  is adjusted by the amount 
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Hence, the weight is updated by  
( ) ( ) )4()4()4( 1 kowkoko wkwkw ∆η+=+   (14) 

where )4(
kow  is the learning rate for adjusting the parameter wη  

 
Layer 3: 
Since the weights in this layer are unity, none of them is to be modified. Only the error term needs to be 
calculated and propagated.  
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Layer 2:  
The multiplication operation is done in this layer. The error term is computed by 
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where the subscript k denotes the rule in connection with jth node in layer 2. Then, the adaptive rule for 
ijm  is 
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and the adaptive rule for ijσ   is 
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Thus the updated rules for ijm  and ijσ  

( ) ( ) ijmijij mkmkm ∆η+=+1  (19) 
 

( ) ( ) ijijij kk σ∆η+σ=+σ σ1  (20) 

where mη  and ση are the learning rates for adjusting the parameters ijm  and ijσ  
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3.2.3 Learning rates adjustment using PSO  
The PSO is a population-based optimization method first proposed by Kennedy and Eberhart. PSO 
technique finds the optimal solution using a population of particles. Each particle represents a candidate 
solution to the problem [12]. 
 
Step 1: Initialize random swarm location and velocity 
To begin, initial location )N(R d

i and velocities )N(v d
i of all particles are generated randomly in whole 

search space. The generation particles are ]R,R,R[R iii
d
i

321= , where 321
iii R,R,R  are the FNN learning 

rates, respectively. The initial pbest of a particle is set by its current position. Then, gbest of a group is 
selected among the pbests in the group. The random generation of )N(R d

i  initial value ranged  as: 

],[U~R d
max

d
min

d
i ηη  (21) 

where maxmin ,ηη  are the lower and upper bound of the learning rates. 
 
Step 2: Update velocity 
During each iteration, every particle in the swarm is updated using (22) and (23). Two pseudorandom 
sequences ),(U~r 101  and ),(U~r 102  are used to affect the stochastic nature of the algorithm. For all 
dimensions d , let  d

iR , d
iPbest ,and d

iv  be the current position, current personal best position, and 
velocity of the jth dimension of the ith particle. The velocity update step is 
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Step 3: Update Position 
The new velocity is then added to the current position of the particle to obtain its next position 

)N(v)N(R)N(R d
i

d
i

d
i 11 ++=+ , P,,i K1=  (23) 

 
Step 4: Update pbests 
If the current position of a particle is located within the analysis space and does not intrude territory of 
other gbests, the objective function of the particle is evaluated. If the current fitness is better than the old 
pbest value, pbest is replaced by the current position. The calculate fitness  
value of each particle is select as: 

)(1.0
1

wm PPabs
FIT

−+
=  (24) 

 
Step 5: Update gbests 
In the conventional PSO, gbest is replaced by the best pbest among the particles. However, when such a 
strategy is applied to multimodal function optimization, some gbests of different groups can be 
overlapped. To maintain fast convergence rate of PSO, gbest of the group should be selected among the  
having high fitness value. ]Pbest,Pbest,Pbest[Pbest d

p
ddd

i K21=  
 
Step 6: Repeat and Check Convergence 
Steps 2-5 are repeated until all particles are gathered around the gbest of each group, or a maximum 
iteration is encountered. The final d

iGbest  is the optimal learning rate ),,( mw σηηη  of FNN. 
 
4. Simulation results 
In this section, the sliding mode speed observer as well as the FNN with PSO controller were tested. The 
proposed FNN with PSO controller is augmented to preserve the desired command tracking response 
under uncertainties. The optimum rotational speed *

rω  is obtained for each wind speed ωV , and used as a 
reference for the closed loop. Generally the turbine is linked with the generator’s shaft using a  gearbox, 
which imposes an additional transform relation in the model. Dynamics of this gearbox are considered 
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unknown in this paper. Examples of the PI controller are used for comparison with the proposed FNN 
with PSO controller. 

 
4.1  Simulation of variable wind speed 

PI controller  : 1Case  
Figure 3 shows the performance of a PI controller with sliding mode speed observer. As it can be seen, 
the actual speed tracking error is high. 

 
Case 2 : FNN with PSO controller 
The wind profile is tested with a 5 msec sampling time for the wind velocity, with the wind profile a 
volatile sinusoidal wave. The performance of the FNN with PSO controller and sliding mode speed 
observer has been investigated emulating wind turbines of different inertia and friction coefficients. 
Figure 4(a) shows the performance of the FNN with PSO controller and sliding mode speed observer 
control system. In this case, the sliding mode speed observer tracked the actual speed during the whole 
wind profile with very small errors. Figure 4(b) shows the tracking error with approximately 0.3rad/sec. 

  
Figure 3.  Simulation results of the PI controller speed tracking 

 

 
(a) 

 
(b) 

 
Figure 4.  Simulation results of the FNN with PSO controller speed tracking: (a) The wind tracking, (b) 

Rotation speed error 

Rotor speed reference 

Actual rotor speed 

Estimated rotor speed  
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4.2  Simulation of the maximum power tracking 
PI controller : 1Case  

The verification of maximum power tracking control is shown in Figure 5(a), and Figure 5(b) shows the 
turbine power mP  and generator power eP  tracking error. 

 

  
 

(a) 
 

(b) 
 

Figure 5.  Simulation results of the PI controller maximum power tracking: (a)The maximum power 
tracking control signal, (b)Power tracking error 

 

Case 2 : FNN with PSO controller  
Maximum power tracking control and the dynamic difference between the turbine power mP  and 
generator power eP  due to the system inertia and friction are also shown in Figure 6(a) and Figure 6(b). 
The simulation results show that the wind velocity is well estimated with small errors in both cases. Note 
that the actual speed is closely tracked by the estimation obtained from the sliding mode speed observer. 
With the controlled rotor speed, the actual turbine power mP  and the generator power eP  can track the 
desired wP  closely. The system could capture the maximal wind energy shown in the figures. It shows a 
robust control performance of the proposed FNN with PSO controller and sliding mode speed observer, 
both in the wind speed tracking and power regulation. 
 

  
 

(a) 
 

(b) 
 

Figure 6.  Simulation results of the FNN with PSO controller maximum power tracking: (a) The 
maximum power tracking control signal, (b) Power tracking error 
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5. Conclusion 
This paper presented a new control strategy for IG in a variable speed WECS using sliding mode speed 
observer to estimate the rotational speed of the IG. We estimate the rotor position from flux linkages 
using the sliding mode speed observer. The dynamic performance can be used to obtain an accurate 
estimation of rotational speed not only in steady state but also when fast input changes are applied to the 
WECS. The algorithms were proposed to cope with the intrinsic nonlinear behavior of wind 
turbines/generators. The approach, based on a combination of FNN with PSO and a sliding mode speed 
observer, allowed fast convergence to a simple linear dynamic behavior, even in the presence of 
parameter changes and model uncertainties, while, the traditional PI controller can not ensure. The 
proposed FNN with PSO controller and sliding mode observer are successfully implemented in this study  
for the speed control of WECS. 
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