
INTERNATIONAL JOURNAL OF 

ENERGY AND ENVIRONMENT 
ISSUE ON APPLIED MECHANICS RESEARCH  

 

 

Volume 8, Issue 6, 2017  pp.537-544 
 

Journal homepage: www.IJEE.IEEFoundation.org 

 

 

ISSN 2076-2895 (Print), ISSN 2076-2909 (Online) ©2017 International Energy & Environment Foundation. All rights reserved. 

An analytical approach for evaluating the flutter instability 

boundaries for cantilever pipes conveying fluid 
 

 

Albert E. Yousif
1
, Muhsin J. Jweeg

2
, Mahmud R. Ismail

1
 

 
1
 College of Engineering, Al-Nahrain University, Baghdad, Iraq. 

2
 College of Engineering, Telafer University, Baghdad, Iraq. 

 
Received 31 Oct. 2017; Received in revised form 28 Jan. 2017; Accepted 29 Jan. 2017; Available online 1 Nov. 2017 

 

 

Abstract 

A new approach for evaluating the flutter instability boundaries based on the analytical solution of the 

equation of motion of cantilever pipes conveying fluid has been attempted. This approach leads to a 

simple transcendental equations form which the critical speed of flutter instability and the associated 

natural frequencies of cantilever pipes can be determined for any pipe parameters. The stability and 

critical natural frequencies maps can be simply constructed. The results of the presented approach are 

carefully checked with published results. The presented results showed very good agreements. 

Copyright © 2017 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 

Cantilever pipes conveying fluid are non-conservative systems according to the effects of the fluid-

structure interaction (FSI). Because of the FSI effects a significant amount of energy can either be added 

to or subtracted from the total system energy. In such non conservative systems the natural frequencies 

can become complex [1]. 

Flutter instability arises from the effect of the Coriolis force which results from the relative rotation of 

the fluid element as it vibrates laterally. At certain fluid velocities Coriolis force causes a positive 

damping mechanism and tends to decay the vibration. However, at certain higher velocities it causes a 

negative damping mechanism leading to exponential growth vibration or flutter. In contrast conservative 

pipes such as simply supported or clamped pipes the Coilolis force has no effect on vibration due to the 

symmetry of the mode shapes [2]. 

Flutter instabilities play a major role in the dynamics of cantilevers. It is of interest to split the region of 

fluid parameters at which they may occurs. At this region very large oscillations can exist in the pipe 

structure leading to fatigue stresses, these stresses may cause a failure or even rupture at the weak 

sections. In industrial or plant applications the damage may become cumulative since the oscillating pipe 

can keep a trigger of secondary failures for the surrounding components. 

The first attempt to investigate flutter instability of cantilever pipes theoretically and experimentally was 

done by Gregory and Paidoussis [1, 3], later by Bishop and Fawzy [4] and also by Sugiyama and Noda 

[5]. These authors employed approximate analytical approaches to determine the flutter instability 

boundaries. Such approaches were made by using Galerkin method to desecretize the equation of motion 

to a few degrees of freedom (DOF). However, it had been demonstrated that the required number of DOF 
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is 5 or more for accurate analysis [1].Hence a large matrix size will be arise for solving the resulting 

Eigen- value problem.  

Finite element technique is an alternative approach for evaluating flutter instability boundaries, e.g., 

Osama [6] investigated a collar-stiffened and normal cantilever pipes conveying fluid by employing this 

method. 

The mode exchange and flutter analysis which can be taken place as a result of the collision of Eigen-

values was studied by Seyranian [7]. He made a mathematical description to discuss these phenomena in 

the complex plane.  

The fundamental concepts of the dynamics of cantilever pipes conveying fluid such as modeling, 

vibration and flutter instability analysis and the comprehensive complete survey of this topics has been 

compiled in book form by Paidoussis [8].  

Recently, Si-Ung et.al. [9] investigated the flutter problem graphically by considering the order of 

branches in root locus diagrams and the transferences of flutter-type instability from one Eigen-value 

branch to another, Wang [10] studied the non-linear dynamics for tubular cantilever including the effect 

of flutter instability. He used the Hopf-bifurcation diagram which constructed numerically from solving 

the non linear equation of motion using fourth order Runge–Kutta integration algorithm. He evaluated 

the critical velocities for flutter and the other non-linear behaviors such as the limit cycles of oscillations 

and chaotic. 

As it can be seen from the work of the previous researches that the basic methods for evaluating the 

flutter instability were achieved either by using approximated analytical solution or numerical solutions. 

However, the analysis in the two cases will lead to numerical matrix solution with large number of DOF. 

Evidently this will lead to a hard computational task. 

In the present work the same problem will be resolved analytically. The analytical solution is based on 

infinite number of DOF or continuous system analysis. The critical velocities and natural frequencies for 

flutter instability can be evaluated by simple solution of two transcendental equations derived directly 

from the General solution of the equation of motion. 

 

2. Theoretical Considerations 

The fluid conveying pipe under consideration is assumed to obey Euler–Bernoulli Beam theory. The 

structure of the pipe has small deformation, the conveyed fluid is assumed to be non-viscous and 

incompressible and the effect of gravity and internal damping are neglected. Now, for a pipe with 

uniform tubular section shown in Figure 1. 

 

 
 

Figure 1. Cantilever pipe conveying fluid. 

 

For small displacement the x-component of the fluid velocity can be assumed to be V and the y- 

component is: 
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The strain energy is: 
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Performing the variation and integrating by parts yield to the following equation of motion [11]: 
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Eq. (4) can be written in the following dimensionless form: 
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2.1 Analytical solution 

Let the general solution of eq (5) takes in the following form: 
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where 

 

Ω=ω
EImmL pf /)(.2 

 (8) 

 

and ω is the circular frequency. 

Let the complex natural frequency Ω for non conservative cantilever pipes, takes the following form: 

 

Ω=Ωr+iΩi (9) 

 

where Ωr and Ωi are the real and imaginary components of the natural frequency, respectively  

Substituting eq. (9) and (7) into eq. (5) gives the following polynomial equation in λ: 

  

 λ4-(U2+γ)λ2-2iβ2U(Ωr+iΩi)λ-(Ωr+iΩi)2=0 (10) 

 

Referring to eq. (7), when the imaginary part Ωi >0 this produces a decaying of vibration or stable 

vibration. And when Ωi<0 produces exponential growth or flutter. The limiting value at which the 

imaginary parts of the natural frequencies change from positive (stable) to negative (flutter) is when 

Ωi =0. At this condition the "neutral stability" can be evaluated. 

Hence, to find the neutral conditions for flutter instability Ωi =0 is introduced in eq. (10) to get [13]: 

 

λ4-(U2+γ)λ2-2iβ2UΩrλ-Ωr2=0 (11) 
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Equation (11) is a Quartic polynomial. Its four roots are given in a radical form [12], as the follows: 

 

λ1,2=
 2)/4(2/2/1 2  rUi
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 2)/4(2/12/1 2  rU

  (12) 

 

where: 

 

ρ= U2 +γ, 
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Eq. (12) can be written in complex form as follows: 
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On substituting the values of λ, s given in eq. (14) into the solution given in eq. (7) with Ωi =0 and after 

making some algebraic and geometrical manipulations, the General solution of the equation the neutral 

flutter instability can be finally presented as the follows: 
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Where A,B,D and E are constants related to C1,C2,C3and C4. 

   

2.2 Flutter analysis 

The boundary conditions for cantilever pipes are; 

 

ε(0,τ)=0, 0),0(   , 0),1(`   , 0),1(    (17) 

 

Imposing the boundary conditions given in eq.(17) in the general solution given by eq.(16) results in the 

following set of algebraic equations: 

 

B+E= 0 

-iaB+b1A+iaE+b2D=0 

Ae-iasinhb1+B(e-iacoshb1-eiacosb2)+Deiasinb2=0 

A[-ia(3b12-a2)sinhb1+b1(b12-3a2)coshb1]e-ia+B[b1(b12-3a2)e-iasinhb1 

+ia(3b12-a2)coshb1e-ia]-[b2(3a2+b22)sinb2-ia(3b12+a2)cosb2]eia+D[-ia(3b22+a2)sinb2 

-b2(3a2+b22)cosb2]eia=0 (18) 
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Substituting the first of eq. (18) into the remaining equations and arranging, the result is the following 

matrix equation: 
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where: α1= [ia(3b12-a2)sinhb1+b1(b12-3 a2)coshb1] e-ia, α2=[b1(b12-3a2)e-iasinhb1-ia(3b12-

a2)coshb1e-ia]-[b2(3a2+b22)sinb2-ia(3b12+a2)cosb2]eia, α3=[-ia(3b22+a2)sinb2- b2(3a2+b22)cosb2] 

eia. 

 

Eq. (19) can be restated in the following form: 

 

[α]{A}=0 (20) 

 

For nontrivial solution: 

 


=0 (21) 

 

On expansion of the determinant of eq. (21) and isolating the real and imaginary terms can get the 

following equations, respectively. 

 

[3a2(b22-b12)+4a4-b14-b24]sinhb1sinb2-[b1b2(6 a2+b22- b12)]coshb1cosb2 

+[b1b2(6a2+b22-b12)]cos2a=0 (22) 

 

ab1(4a2+b12+3b22)coshb1sinb2+ab2(4a2+b22-3b12)sinhb1cos(b2)+[b1b2(b12+b22)]sin2a=0 (23) 

 

Where a, b1, b2 are as defined in eqs. (15) and (13). 

 

Solution of eqs. (22) and (23) can give the critical speeds and the critical natural frequencies for flutter 

instability at any values of pressure γ and mass ratio β [13]. 

 

3. Results and discussions  

At dimensionless pressure γ=0, the mass ratio β is taken as a variable parameter which is varied from 0 to 

0.9, therefore at any value of β the solutions of eqs. (22) and (23) can give the critical fluid velocity of 

flutter instability U and the associated real frequency Ωr. When these velocities are plotted in U- β plain 

a map of the regions of stable, neutrally stable and flutter instability can be constructed. Such a map for 

zero pressure is shown in Figure 2. Figure 3 shows the corresponding real natural frequency at which 

flutter instability occurs for the same pipe parameters.  

To check the validity of the present approach the results obtained in Figures 2 and 3 are compared with 

those reported in two other papers. The first is ref. [1] in which Galerkin method was used and the 

second is ref. [6] where the Finite Element method was employed. These results are presented in Table 1. 

Table 1 indicates two important points. Firstly, it shows that the present solution is in a very good 

agreement with the other two methods. Where the maximum errors in U and Ωr are not exceeded 5.5% 

for the worst cases. Secondly, it shows that the critical velocities and the real frequencies obtained by the 

present approach have the lowest values. This can be attributed to the fact that, the present technique is 

based on infinite DOF (continuous system) analysis. In contrast, the other approaches are based on 

descretize the continues system to finite DOF which leads to increasing stiffness of the original system 

and hence increasing the natural frequencies and the associated critical velocities. 

To study the effect of the pressure on flutter instability, Figures 4 and 5 are constructed. In these figures 

the dimensionless pressures are assigned the values γ =1,2 and 3. It is clear from these figures that the 

effect of increasing the fluid pressure leads to a slight decreasing both the critical velocities and the 

natural frequencies. This can be interpreted from observing eq. (5). Evidently the pressure has small 
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effect on the axial force (second term) and has no effect on the Coriolis force (third term) which is 

represent the dynamic mechanism of the flutter.  

To investigate the behavior of the natural frequencies at the critical fluid velocity a selected point from 

Figures 2 and 3 are chosen as an example. In this example β= 0.13 is taken and the complex natural 

frequencies for the lowest four modes are calculated. The fluid velocity U is varied from 4 to 7. In 

calculating the natural frequencies the procedure of ref [6] is followed where a 5DOF Galerkin analysis 

is used. The aim of plotting of Figures 2 and 3 is to evaluate the boundaries which separate the stable and 

unstable regions for a given pipe parameters as the mass ratio increased from 0 to 1. For any mass ratio 

the dimensionless velocity and frequency can be evaluated. The resulted complex frequencies are plotted 

in Figures (6-9). As it can be seen from these figures that the imaginary part of the natural frequency 

becomes zero at the second mode, Figure 7 where U=5. This is a sufficient condition for initiation the 

flutter instability hence U=5 is the critical velocity. The corresponding real natural frequency from the 

same figure is Ωr=13.5. These values are coincide with those given in Figures 2 and 3 for β= 0.13.  

 

  

 

Figure 2. Stability map for cantilever pipe,  

γ = 0. 

 
Figure 3. Real frequencies at critical velocities, 

γ = 0. 

 

  
 

Figure 4. Stability map of cantilever pipe at 

different values of γ. 

 

 

Figure 5. Real frequencies at critical velocities at 

different values of γ. 
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Table 1. Comparis of the theoretical results of the present work with the numerical results of ref. [6] and 

ref. [1]. 

 

β Present solution Finite element ref [6] Galerkin method ref [1] 

U Ωr %Error U Ωr %Error 

U Ωr In U In Ωr In U In Ωr 

0.00 4.20 13.00 4.300 13.25 2.38 1.92 4.37 13.70 4.05 5.34 

0.13 4.95 13.90 5.100 13.95 3.03 0.36 5.22 14.00 5.45 0.72 

0.23 5.95 13.55 6.050 13.66 1.68 0.81 6.16 13.65 3.53 0.74 

0.29 7.05 14.15 7.120 14.25 0.99 0.71 7.18 13.99 1.92 -1.13 

0.29 8.10 19.50 8.150 19.66 0.62 0.82 8.20 20.20 1.23 3.60 

0.35 8.50 24.00 8.550 24.13 0.59 0.54 8.75 23.80 2.94 0.83 

0.43 8.95 26.55 9.050 26.66 1.11 0.41 9.20 26.98 2.79 1.62 

0.60 10.00 26.35 10.10 26.39 1.00 0.15 10.23 26.85 2.30 1.89 

0.70 11.15 28.15 11.20 28.27 0.45 0.42 11.80 28.35 5.82 0.71 

0.70 12.25 29.15 12.35 29.18 0.82 0.10 12.58 29.35 2.69 0.69 

0.80 12.50 46.00 12.61 46.89 0.88 1.93 12.82 45.78 2.56 -4.47 

0.89 14.25 47.50 14.31 47.83 0.45 0.69 14.55 47.25 2.11 -0.53 

0.91 15.80 55.00 15.89 55.55 0.57 1.00 16.12 55.60 2.02 1.10 

 

  
 

Figure 6. First natural frequencies at β = 0.13. 

 

 

Figure 7. Second natural frequencies at β = 0.13. 

 
 

  
 

Figure 8. Third natural frequencies at β = 0.13. 

 

 

Figure 9. Fourth natural frequencies at β = 0.13. 
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4. Conclusions 

The following main conclusions can be derived; 

1-  The present theoretical approach provides an accurate and simple analytical method for evaluating 

the critical fluid velocities and the real natural frequencies for flutter instability of cantilever pipes 

conveying fluid. Instead of using the Numerical methods which are attempted in the literature.  

2- This approach is checked with other two approaches available in literature and the results showed a 

very good agreement where the error is not exceeded 5.82% for the worst cases. 

3- The damping has predominated effect on critical speeds of flutter instability since it may become 

negative and amplify the oscillation.  

4- The effect of the fluid pressure on flutter instability is studied. The results showed that increasing the 

pressure slightly reduces the critical velocities and the real frequencies of flutter instability. 

 

Nomenclature 

Af.,Ap:      Fluid and pipe cross sectional area, respectively (m
2
) 

E:           Modulus of elasticity (N/m
2
) 

L:           Pipe length (m) 

mf, mp:    Fluid and pipe mass per unit length, respectively (kg/m) 

P:            Fluid pressure (N/m
2
) 

U:           Dimensionless fluid velocity 

V:           Fluid velocity (m/s) 

ε, δ:       Dimensionless coordinates 

U, β, γ:   Dimensionless velocity, mass ratio, and pressure, respectively 

Ω:          Dimensionless frequency = ωL
2
[(mf + mp) /E I)

1/2   

Ωr, Ωi:    The real and imaginary components of the dimensionless frequency 

ω:         Circular frequency (rad/sec) 

τ:           Dimensionless time 

ρf, ρp:      Fluid and pipe material density, respectively (kg/m
3
) 
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