# International Journal of ENERGY AND ENVIRONMENT

Volume 5, Issue 2, 2014 pp.207-218 Journal homepage: www.IJEE.IEEFoundation.org



# Optimization of energy required and potential of greenhouse gas emissions reductions for nectarine production using data envelopment analysis approach

Peyman Qasemi-Kordkheili<sup>1</sup>, Ashkan Nabavi-Pelesaraei<sup>2</sup>

<sup>1</sup> Department of Agricultural Machinery Engineering and Mechanization, Khuzestan Ramin Agricultural and Natural Resources University, Mollasani, Ahvaz, Iran.

<sup>2</sup> Department of Agricultural Machinery Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.

# Abstract

In this study a non-parametric method of Data Envelopment Analysis (DEA) is used to estimate the energy efficiency and greenhouse gas emissions reduction of nectarine orchard holders in Sari region of Iran. Data were collected using a face-to-face questionnaire method from 45 orchardists. The results showed that based on constant returns to scale model, 24.4% of nectarine orchards were efficient, though based on variable returns to scale model it was 26.7%. The average of technical, pure technical and scale efficiency of nectarine orchards were 0.85, 0.99 and 0.86, respectively. By following the recommendations of this study about 1309 MJ ha<sup>-1</sup> (3.25%) of total input energy could be saved. From total saved energy, electricity by 24.8% had highest share, followed by diesel fuel by 22.2%, fertilizers by 16.6% and water for irrigation by 11.8%. Also, energy ratio, energy productivity and net energy gained could improve by 3.68%, 2.78% and 9.03%, respectively. The results indicated that the total GHG emission of present and optimum orchards was found to be about 1266 and 1221 kgCO<sub>2eq.</sub>ha<sup>-1</sup>; respectively. Moreover, the total GHG emissions can be reduced about 45 kgCO<sub>2eq.</sub>ha<sup>-1</sup>in nectarine production by converting inefficient units to efficient ones.

Copyright © 2014 International Energy and Environment Foundation - All rights reserved.

**Keywords:** Data envelopment analysis; Greenhouse gas emissions; Energy efficiency; Energy indices; Nectarine.

# 1. Introduction

Nectarines (*P. persica var. nucipersica*) are essentially the same fruit as peach, the primary difference is that nectarines are smooth-skinned and peaches are fuzzy. China, Italy, the United States of America, Spain and Greece are the main peach producers in the world respectively, followed by Iran, ranked in  $6^{th}$  place, also total of peach and nectarine production of Iran was about 498346 tons [1]. The energy is defined as the capacity to do work at the heart of all human activities, especially those concerning the production of goods and services [2]. The energy in agriculture is important in terms of crop production and agro processing for value adding. Human, animal and machinery are extensively used for crop production in agriculture [3]. Energy use in agricultural production has been increasing faster in comparison with many other sectors of the world economy because agricultural productional farming

methods [4]. Intensive energy consumption as well as reducing the known energy resources is the key factor to develop the philosophy of optimum energy consumption. Optimum use of energy helps to achieve increased production and contributes to the economy, portability and competitiveness of agricultural sustainability of rural communities [5]. Data Envelopment Analysis (DEA) is a nonparametric technique of frontier estimation which is used extensively in many settings for measuring the efficiency and benchmarking of decision making units (DMUs). The main advantage of non-parametric method of DEA compared to parametric ones is that it assumes neither a preconceived functional relationship imposed between inputs and outputs, nor the prior information about weights of inputs and outputs in contrast to parametric statistical approaches [6]. The enhancement of the greenhouse effect leads to increasing Earth-surface temperatures and global climate change. Global climate change and population growth are placing new pressures on food production systems; demanding increases food security while safeguarding the natural resources by reducing the environmental footprints [7]. The reduction of energy consumption is tantamount to reduction of greenhouse gas (GHG) emissions in agricultural activity. Because both items have direct relationship with input usage in agricultural activities. Several investigations had been done on energy use optimization and GHG emissions reductions using DEA such as: Khoshnevisan et al [8] investigated the optimization of energy consumption and GHG emissions reduction for wheat production. Nabavi-Pelesaraei et al. [9] determined and compared the efficient and inefficient orange producers in terms of energy consumption and GHG emissions. They determined the effect of energy optimization on GHG emissions for converting inefficient units to efficient ones. In another study, the DEA method was applied to improve energy efficiency and GHG emissions in cucumber production [10].

With considering lack of any study on energy use efficiency and GHG emissions in nectarine production by using DEA, attempt has been made to determine the technical, pure technical and scale efficiency of nectarine orchards in Iran. Therefore, the present study was undertaken to discriminate efficient orchardists from inefficient ones and optimize the energy inputs and GHG emissions reductions on nectarine production in the Sari region of Iran.

#### 2. Materials and methods

# 2.1 Sampling design

This study was conducted in the Sari Region, in the north of Iran within 35° 58 and 36° 50 north latitude and 52° 56 and 53° 59 east longitudes [11]. The surveyed region had homogenous conditions for orchard establishment with regards to climatic conditions, topography and soil type. The initial data were collected from nectarine orchardists using face-to-face questionnaire in the production year 2012/2013. The sample size was determined by simple random sampling method [12]. Accordingly, the sample size was calculated as 39. In order to increase the accuracy, the sample was considered 45 in this study. It's should be noted, all of the orchards were single-crop nectarine orchards.

#### 2.2 Energy equivalents of inputs and output

Nectarine is an important agricultural commodity in sari region. Very well-drained soils, abundant nitrogen fertility, plenty of summer water, fruit thinning, and pest control sprays to prevent peach leaf curl and brown rot are major requirements for nectarine orchards. Nectarines orchards required energy input from seven sources include human power, machinery, diesel fuel, pesticides, chemical fertilizers, water for irrigation and electricity. Also, nectarine yield is the only energy output. In order to calculate the amount of energy used by each orchardist, each input source was converted into its energy equivalent so the information of Table 1 is used. The input and output were calculated per hectare for each orchard and then these data were multiplied by the coefficient of energy equivalent (Table 1). As can be seen in Table 1, the total energy consumption and nectarine yield were calculated about 40275 MJ ha<sup>-1</sup> and 54851 kg ha<sup>-1</sup>, respectively.

## 2.3 Data envelopment analysis (DEA)

DEA was first introduced as a general method for classifying a population of observations and was designed as a decision support tool for complex systems, where a large number of mutual interacting variables are involved [22]. DEA is a data-oriented technique used for estimation of resource use efficiency and ranking production units on the basis of their performances. Production units are termedDMUs in DEA terminology. In this study two main model of DEA include: CCR (Charnes-Cooper–Rhodes) and BCC (Banker-Charnes-Cooper) were used. The CCR model is built on the

assumption of constant returns to scale (CRS) of activities and the BCC model is built on the assumption of variable returns to scale (VRS) of activities[23]. Also, the efficiency of orchards was discussed based on different forms of DEA includes: Technical Efficiency (TE), Pure Technical Efficiency (PTE) and Scale Efficiency (SE). The input variables were defined as: human power, machinery, pesticides, water for irrigation, electricity, chemical fertilizers and diesel fuel, while, the nectarine yield was the single output variable.

Table 1. Energy coefficients and energy inputs/output in various operations of nectarine production

| Inputs (unit)                   | Energy equivalent (MJ unit <sup>-1</sup> ) | Quantity per<br>unit area (ha) | Total energy<br>equivalent (MJ ha <sup>-1</sup> ) |
|---------------------------------|--------------------------------------------|--------------------------------|---------------------------------------------------|
| A. Inputs                       |                                            |                                |                                                   |
| 1. Human labor (h)              | 1.96 [13]                                  | 1339                           | 2624                                              |
| 2. Machinery (h)                | 62.7 [9]                                   | 61.5                           | 3855                                              |
| 3. Diesel fuel (l)              | 56.3 [14]                                  | 141                            | 7929                                              |
| 4. Chemical fertilizers (kg)    |                                            |                                |                                                   |
| (a) Nitrogen                    | 66.1 [15]                                  | 147                            | 9800                                              |
| (b) Phosphate $(P_2O_5)$        | 12.4 [16]                                  | 98.1                           | 1220                                              |
| (c) Potassium ( $K_2O$ )        | 11.1 [17]                                  | 175                            | 1957                                              |
| (d) Sulphur (S)                 | 1.1 [15]                                   | 89.3                           | 100                                               |
| 5. Farmyard manure (kg)         | 0.3 [18]                                   | 6000                           | 1800                                              |
| 6. Pesticides (kg)              |                                            |                                |                                                   |
| (a) Insecticide                 | 101.2[19]                                  | 8.23                           | 834                                               |
| (b) Herbicide                   | 238[19]                                    | 2.10                           | 500                                               |
| (c) Fungicide                   | 92 [20]                                    | 9.78                           | 900                                               |
| 7. Water for irrigation $(m^3)$ | 1.1[18]                                    | 3676                           | 3749                                              |
| 8. Electricity (kWh)            | 11.9 [18]                                  | 420                            | 5007                                              |
| The total energy input (MJ)     |                                            |                                | 40275                                             |
| B. Output                       |                                            |                                |                                                   |
| 1. Nectarine (kg)               | 1.9 [21]                                   | 28869                          | 54851                                             |

#### 2.4 Technical efficiency

Technical efficiency (global efficiency) is basically a measure by which DMUs are evaluated for their performance relative to the performance of other DMUs in consideration. The technical efficiency can be defined as follows (Eq. 5) [24, 25].

$$TE_{j} = \frac{u_{1}y_{1j} + u_{2}y_{2j} + \dots + u_{n}y_{nj}}{v_{1}x_{1j} + v_{2}x_{2j} + \dots + v_{m}x_{mj}} = \frac{\sum_{r=1}^{n} u_{r}y_{rj}}{\sum_{s=1}^{m} v_{s}x_{sj}}$$
(1)

where,  $u_r$ , is the weight (energy coefficient) given to output *n*;  $y_r$ , is the amount of output *n*;  $v_s$ , is the weight (energy coefficient) given to input *n*;  $x_s$ , is the amount of input *n*; *r* is number of outputs (r = 1, 2, ..., *n*); *s* is number of inputs (s = 1, 2, ..., m) and *j* represents *jth* of DMUs (j = 1, 2, ..., k). To solve Eq. (1), following Linear Programming (LP) was formulated:

Maximize 
$$\theta = \sum_{r=1}^{n} u_r y_{rj}$$
  
Subjected to  $\sum_{r=1}^{n} u_r y_{rj} - \sum_{s=1}^{m} v_s x_{sj} \le 0$  (2)

$$\sum_{s=1}^{m} v_s x_{sj} = 1$$
  
 $u_r \ge 0, v_s \ge 0, \text{ and } (i \text{ and } j = 1, 2, 3, ..., k)$ 

where  $\theta$  is the technical efficiency, Model (3) is known as the input oriented CCR DEA model assumes constant returns to scale (CRS) [26].

#### 2.5 Pure technical efficiency

This model called BCC and calculates the technical efficiency of DMUs under variable return to scale conditions. Pure technical efficiency can separate both technical and scale efficiencies. The main advantage of this model is that scale inefficient orchards are only compared to efficient orchards of a similar size [27]. The dual model is derived by construction from the standard inequality form of linear programming [28]. It can be expressed by Dual Linear Program (DLP) as follows [15]:

$$\begin{aligned} Maximize & z = uy_i - u_i \\ Subjected to & vx_i = 1 \\ -vX + uY - u_o e &\leq 0 \\ v &\geq 0, u &\geq 0 \text{ and } u_o \text{ free in sing} \end{aligned} \tag{3}$$

where z and  $u_0$  are scalar and free in sign; u and v are output and input weight matrixes, and Y and X are the corresponding output and input matrixes, respectively. The letters  $x_i$  and  $y_i$  refer to the inputs and output of its DMU.

#### 2.6 Scale efficiency

Scale efficiency gives quantitative information of scale characteristics; it is the potential productivity gain from achieving optimal size of a DMU. The relationship among the scale efficiency (SE), technical efficiency (TE) and pure technical efficiency (PTE) can be expressed as follows [29]:

$$Scale efficiency = \frac{Technical efficiency}{Pure technical efficiency}$$
(4)

Using scale efficiency helps orchardists to find the effect of orchard size on efficiency of production. Simply, it indicates that some part of inefficiency refers to inappropriate size of DMU, and if DMU moved toward the best size the overall efficiency (technical) can be improved at the same level of technologies (inputs) [30]. If an orchard is fully efficient in both the technical and pure technical efficiency scores, it is operating at the most productive scale size. On the other hand if an orchard has the high pure technical efficiency score, but a low technical efficiency score, then it is locally efficient but not globally efficient due to its scale size. Thus, it is reasonable to characterize the scale efficiency of a DMU by the ratio of the two scores [31]. In the analysis of efficient and inefficient DMUs the energy saving target ratio (ESTR) index can be used which represents the inefficiency level for each DMUs with respect to energy use. The formula is as Eq. (5):

$$ESTR_{j} = \frac{(Energy \ Saving \ T \ arg \ et)_{j}}{(Actual \ Energy \ Input)_{j}}$$
(5)

#### 2.7 GHG emissions

Application of these inputs leads to emission of  $CO_2$  and other GHGs. Thus, an understanding of the emissions expressed in kg CE (kilograms of carbon equivalent) for different tillage operations, chemical fertilizers and pesticides use, supplemental irrigation practices, harvesting and residue management is essential to identifying C-efficient alternatives such as biofuels and renewable energy sources for

seedbed preparation, soil fertility management, pest control and other orchard operations [8, 32]The GHG emissions of nectarine production were computed by standard coefficient of  $CO_2$  emissions for each input (Table 2). The inputs were reasonable of GHG emissions in nectarine production including diesel fuel, machinery, electricity, chemical fertilizers and pesticides. After determination of efficient and inefficient units, the GHG emissions was calculated for optimal condition and compared with regular condition. The purpose of this research was determination of GHG reductions using DEA.

| Input                    | Unit | GHG Coefficient                            | Reference |
|--------------------------|------|--------------------------------------------|-----------|
|                          |      | (kg CO <sub>2eq</sub> unit <sup>-1</sup> ) |           |
| 1. Machinery             | MJ   | 0.071                                      | [33]      |
| 2. Diesel fuel           | L    | 2.76                                       | [34]      |
| 3. Chemical fertilizers  |      |                                            |           |
| (a) Nitrogen             | kg   | 1.3                                        | [10]      |
| (b) Phosphate $(P_2O_5)$ | kg   | 0.2                                        | [9]       |
| (c) Potassium ( $K_2O$ ) | kg   | 0.2                                        | [35]      |
| 4. Pesticides            |      |                                            |           |
| (a) Insecticide          | kg   | 6.3                                        | [32]      |
| (b) Herbicide            | kg   | 5.1                                        | [32]      |
| (c) Fungicide            | kg   | 3.9                                        | [32]      |
| 5. Electricity           | kW h | 0.608                                      | [9]       |

Table 2. GHG emissions coefficients of agricultural inputs

Basic information on energy inputs of nectarine production were entered into Excel 2013 spreadsheets, and Frontier Analyst 4 software programs.

# 3. Results and discussion

## 3.1 Efficiency estimation of orchardists

The results of BCC and CCR models of DEA showed that from total of 45 orchardists, based on CCR results, only 11 orchards were relatively efficient and their efficiency score were 1. Also, from the results of BCC model 29 orchards were efficient. The average of pure technical efficiency and technical efficiency calculated as 0.853 and 0.987, respectively. Moreover, the pure technical efficiency varied from 0.88 to 1. Also, the minimum amount of the technical efficiency was calculated as 0.55. Mousavi-Avval et al. [29] applied the non-parametric method of DEA to determine the technical and pure technical efficiencies of orchardists for apple production in Iran; they found that TE and PTE were 0.79 and 0.90, respectively. Nabavi-Pelesaraei et al. [9] was computed average of TE, PTE and SE of about for orange orchardists by DEA method, respectively. In another study on alfalfa production, TE, PTE and SE of farmers were calculated as 0.84, 0.97 and 0.89, respectively [23]. The summarized statistics for the three estimated measures of efficiency are presented in Table 3. The wide range in the technical efficiency of farmers shows that all the farmers were not aware of the on time usage of the inputs and did not apply them at the proper amount [6].Additionally, the calculation of scale efficiency shows that this amount was measured as 0.86, implying that the average size of farms was in optimal size.

Table 3. Average technical, pure and scale efficiency of nectarine orchardists (45 units)

| Particular                | Average | SD    | Min  | Max |
|---------------------------|---------|-------|------|-----|
| Technical efficiency      | 0.853   | 0.142 | 0.55 | 1   |
| Pure technical efficiency | 0.987   | 0.026 | 0.88 | 1   |
| Scale efficiency          | 0.865   | 0.143 | 0.55 | 1   |

Results obtained by the application of the input-orientated BCC and CCR models are illustrated in Figure 1. The high average of scale efficiency shows that farmers utilize their inputs in the most productive scale size and considerable saving in energy from the different sources were seen. The result showed that 12 orchard were Efficient. Also, 12 orchards were between 0.9 to < 0.99, 14 orchards were between 0.7 to < 0.89 and 7 remain orchard had the efficiency between 0.5 and 0.69.

ISSN 2076-2895 (Print), ISSN 2076-2909 (Online) ©2014 International Energy & Environment Foundation. All rights reserved.

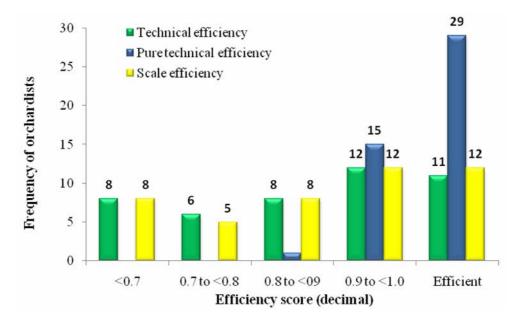



Figure 1. Efficiency score distribution of nectarine producers

#### 3.2 Optimum energy requirement and saving energy

The optimum energy requirement and saving energy for nectarine production based on the results of BCC model is shown in Table 4.The total energy saving was computed as 1309 MJ ha<sup>-1</sup>. From Table 4 it is clear that, the highest saving energy is provided by electricity (325MJ ha<sup>-1</sup>) energy inputs, followed by diesel fuel (291 MJ ha<sup>-1</sup>) and chemical fertilizers (217 MJ ha<sup>-1</sup>). Savings energy in the different sources is possible by change in production procedure. For example many orchardists used pesticides to control herbs. Plowing the soil with disk harrow or moldboard plow instead of chemical agents can be a useful way to control herbs.

| Input                   | Optimum energy<br>requirement (MJ ha <sup>-1</sup> ) | Saving energy (MJ ha <sup>-1</sup> ) | Saving<br>energy (%) | Contribution to the total savings energy (%) |
|-------------------------|------------------------------------------------------|--------------------------------------|----------------------|----------------------------------------------|
| 1. Human labor          | 2523                                                 | 101                                  | 3.85                 | 7.72                                         |
| 2. Machinery            | 3783                                                 | 72                                   | 1.87                 | 5.50                                         |
| 3. Diesel fuel          | 7638                                                 | 291                                  | 3.67                 | 22.2                                         |
| 4. Chemical fertilizers | 12860                                                | 217                                  | 1.66                 | 16.6                                         |
| 5. Farmyard manure      | 1754                                                 | 46                                   | 2.56                 | 3.51                                         |
| 6. Pesticides           | 2132                                                 | 102                                  | 4.57                 | 7.79                                         |
| 7. Water for irrigation | 3595                                                 | 154                                  | 4.11                 | 11.8                                         |
| 8. Electricity          | 4682                                                 | 325                                  | 6.49                 | 24.8                                         |
| Total energy            | 38966                                                | 1309                                 | 3.25                 | 100                                          |

Table 4. Optimum energy requirement and saving energy for nectarine production

As can be seen in Table 4, that the highest contribution to the total savings energybelonged to electricity with 24.8%, followed by diesel fuel with 22.2% and chemical fertilizers with 16.6%. The inappropriate electro pumps for irrigation were the main reason forindiscriminate use of electricity. Also, the non-standard machinery was effective in excessive consumption of diesel fuel and availability of chemical fertilizers (specially nitrogen) was the reason for high consumption of chemical fertilizers in the studied area. Accordingly, the selection of appropriate electro pumps, imports of standard machinery, timely maintenance and reduction of chemical fertilizers (mainly nitrogen).

#### 3.3 Improvements of energy indices

Energy indices such as energy ratio, energy productivity, and net energy gain, as well as the distribution of sources according to direct, indirect, renewable and non-renewable energy groups are given in Table 5.

| Items                         | Unit                | Present quantity           | Optimum quantity | Difference (%) |
|-------------------------------|---------------------|----------------------------|------------------|----------------|
| Energy use                    | _                   | 1.36                       | 1.41             | 3.68           |
| Energy productivity           | kg $MJ^{-1}$        | 0.72                       | 0.74             | 2.78           |
| Specific energy               | $MJ kg^{-1}$        | 1.40                       | 1.35             | -3.57          |
| Net energy                    | MJ ha <sup>-1</sup> | 14569                      | 15884            | 9.03           |
| Direct energy <sup>a</sup>    | $MJ ha^{-1}$        | 19309 (47.9%) <sup>e</sup> | 18438 (47.3%)    | -4.51          |
| Indirect energy <sup>b</sup>  | $MJ ha^{-1}$        | 20966 (52.1%)              | 20528 (52.7%)    | -2.09          |
| Renewable energy <sup>c</sup> | $MJ ha^{-1}$        | 8173 (20.3%)               | 7872 (20.2%)     | -3.68          |
| Non-renewable                 | $MJ ha^{-1}$        | 32102 (79.7%)              | 31094 (79.8%)    | -3.14          |
| Total energy input            | $MJ ha^{-1}$        | 40275 (100%)               | 38966 (100%)     | -3.25          |

Table 5. Improvement of energy indices for nectarine production

<sup>e</sup>Numbers in parentheses indicate percentage of total optimum energy requirement.

<sup>a</sup> Includes human labor, diesel fuel, water for irrigation, electricity.

<sup>b</sup> Includes chemical fertilizers, farmyard manure, pesticides, machinery.

<sup>c</sup> Includes human labor, farmyard manure, water for irrigation.

<sup>d</sup> Includes diesel fuel, electricity, pesticides, chemical fertilizers, machinery.

The results showed that energy use efficiency (energy ratio) can be improved to the value of 1.41 by increasing 3.68%. Also energy productivity, specific energy and net energy in target situation were found to be 0.74 kg  $MJ^{-1}$ , 1.35 MJ kg<sup>-1</sup> and 15884 MJ ha<sup>-1</sup>, that indicates improving of this indices about 2.78%, -3.57% and -9.03%, respectively. In similar study on kiwifruit production the results showed that energy use efficiency and net energy could be improved by 13.86% and 22.56%, respectively, if the farmers applied the recommendations of study results [6]. Pahlavan et al. [36] in the study on rose production showed that energy use efficiency and net energy could improve by 77.29% and 52.73%, respectively.

# 3.4 Setting realistic input levels for inefficient orchardists

In Table 6 the pure technical efficiency, actual energy use and suggested energy requirement from different energy sources for individual inefficient nectarine orchards shown. Also, their average and standard deviation values are presented. The values of optimal energy requirement are the recommendations resulted from this study, indicating how individual inefficient production units can reduce their source wise energy inputs by holding the output level constant. In the last column of Table 6 the ESTR percentage for inefficient orchards are given. As it can be seen, for inefficient production units, ESTR ranges from 0% to 14.9% (orchard no. 14), with the average of 4.13%, indicating that between inefficient production units, the units that have near to zero value of ESTR had better management on input usage, and the no.14 unit was the most inefficient one.

# 3.5 Reduction of GHG emission

The amount of GHG emissions for present and optimum units is given in Table 7. The total GHG emissions of present and optimum orchardists were calculated as 1266 and 1221 kgCO<sub>2eq.</sub>ha<sup>-1</sup>, respectively. Accordingly, the total GHG emissions can be reduced about 45 using energy optimization by DEA. So, it can be said the energy consumption had a direct relationship with GHG emissions. In a similar study, Khoshnevisan et al., [8] reported the energy optimization by DEA would be decreased total GHG emissions of wheat production about 40.3 kgCO<sub>2eq.</sub>ha<sup>-1</sup>by approach. In another study, Nabavi-Pelesaraei et al. [9] applied DEA approach to determination of GHG emissions for efficient and inefficient orange orchardists. They reported the different of GHG emissions between efficient and inefficient units was about 184 kgCO<sub>2eq.</sub>ha<sup>-1</sup>.

Figure 2 displays the share of each input in potential of total GHG reduction in nectarine production. The results illustrated the electricity with 35.6% had the highest share in GHG emissions reduction, followed by diesel fuel with 33.3% and machinery with 11.1%. As can be deduced from the results, it's suggested, the appropriate electro pumps, standard machinery and timely maintenance was applied for nectarine production in studied area.

Table 6. The source wise actual and target energy use for inefficient orchardists in the nectarine production (based on BCC Model)

| Water         Human         Machinery         Electricity         Chemical         Perticidas         Funture         Identi         Mater         Human         Machinery         Electricity           1         100         5470         2300         3420         6840         1231         5170         2300         3420         6840           1         100         5470         2300         3590         5580         1231         5190         3500         5570         5470         5300         5490         5560           1         0         3800         2800         1334         7100         1231         8300         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5560         5                                                                                                                                                                                                                                                                                                                                                                                 | DMU  | PTE  |       |                | Ac        | ctual energ | Actual energy use (MJ ha  | ha <sup>-1</sup> ) |            |      |       |                | Optim     | Optimum energy requirement (MJ ha <sup>-1</sup> ) | requiremen                            | nt (MJ ha | (-<br>-   |                               | ESIK |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|----------------|-----------|-------------|---------------------------|--------------------|------------|------|-------|----------------|-----------|---------------------------------------------------|---------------------------------------|-----------|-----------|-------------------------------|------|
| 5470         2300         3420         6840         12584         7100         2300         1470         2300         3420         3457         3357           3400         2870         3400         3690         11216         7400         11930         3590         3400         3590         3400         3590         3400         3590         3400         3590         3590         3400         3590         3590         3590         3590         3590         3590         3590         3590         3590         3590         3590         3590         3590         3590         3591         3200         3413         3420         3413         3420         3413         3420         3413         3420         3413         3420         3413         3420         3413         3420         3413         3420         3413         3413         3413         3413         3413         3413         3413         3413         3413         3413         3413         3413         3413         3413         3413         3413         3413         3413         3413         3413         3413         3413         3413         3413         3414         3414         3414         3414         3414 <td< th=""><th></th><th></th><th>Water</th><th>Human<br/>labor</th><th>Machinery</th><th></th><th>y Chemical<br/>fertilizers</th><th></th><th>Pesticides</th><th></th><th>Water</th><th>Human<br/>labor</th><th>Machinery</th><th></th><th>y Chemical Diesel<br/>fertilizers fuel</th><th>Diesel</th><th>Pesticide</th><th>Pesticides Farmyard<br/>manure</th><th>(%)</th></td<> |      |      | Water | Human<br>labor | Machinery |             | y Chemical<br>fertilizers |                    | Pesticides |      | Water | Human<br>labor | Machinery |                                                   | y Chemical Diesel<br>fertilizers fuel | Diesel    | Pesticide | Pesticides Farmyard<br>manure | (%)  |
| 09         5400         3570         3500         12320         8100         2580         1257         3577         3577         3577         3577         3577         3577         3570         100         3500         1390         3590         3590         3590         3590         3580         3575         470         3575         470         3575         470         3575         470         3575         470         3575         470         3575         470         350         3590         3580         3541         3525         3681         3547         2575         470         3541         3541         3541         3542         3413         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541         3541                                                                                                                                                                                                                                                                                                                                                                        |      | 1.00 | 5470  | 2300           | 3420      | 6840        | 12584                     |                    | 2300       | 1716 | 5470  | 2300           | 3420      | 6840                                              | 12584                                 | 1         | 2300      | 1716                          | 0.0  |
| 1100         3800         1890         5590         4400         12619         7400         1731         3500         3590         3590           0.92         3100         2000         3160         5580         12716         7200         2100         3100         3510         3100         3141         3220         2541         4322         4767           0.93         3800         2640         44168         8100         2340         1724         302         2411         4322           0.93         3800         2640         14168         8100         2340         1724         3413         2205           0.99         3800         2506         580         13702         8700         1896         3675         2204         2400           0.99         3700         2506         5500         13702         8700         1896         3675         2204         2900           0.99         3700         2400         1700         1990         1800         2300         3901         3201           0.99         3700         2400         1700         1990         1800         2301         2901         2901           100 <t< td=""><td></td><td>66.0</td><td>5400</td><td>2870</td><td>3400</td><td>3690</td><td>12320</td><td>8100</td><td>2580</td><td>1680</td><td>3850</td><td>2457</td><td>3357</td><td>3644</td><td>12165</td><td>7169</td><td>2262</td><td>1659</td><td>8.7</td></t<>                                                                                                                                                                              |      | 66.0 | 5400  | 2870           | 3400      | 3690        | 12320                     | 8100               | 2580       | 1680 | 3850  | 2457           | 3357      | 3644                                              | 12165                                 | 7169      | 2262      | 1659                          | 8.7  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 1.00 | 3800  | 1890           | 3590      | 4400        | 12619                     | 7400               | 1490       | 1721 | 3800  | 1890           | 3590      | 4400                                              | 12619                                 | 7400      | 1490      | 1721                          | 0.0  |
| 0.92         3100         3200         3990         5680         13842         7280         2750         1886         2952         3611           0.98         3700         3590         5590         4560         4556         1374         3902         2941         4723           0.98         84200         2660         3900         5575         13949         3567         3233         420           0.98         84200         2660         3900         5575         13949         3675         2233         3413           0.99         3800         2340         5560         4580         13700         5540         3563         3493           0.99         4300         2556         4560         13702         8600         13702         3800         3651         2039         3441           0.99         4300         2550         4460         13702         8000         1896         5574         2039         3441           1.00         2800         3440         2750         4460         13702         8700         1410         3750         2460         3551         3491           1.00         2800         2800         13750                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 1.00 | 4200  | 2100           | 3160      | 5780        | 12170                     | 7500               | 2100       | 1660 | 4200  | 2100           | 3160      | 5780                                              | 12170                                 | 7500      | 2100      | 1660                          | 0.0  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 0.92 | 3100  | 3200           | 3990      | 5680        | 13842                     | 7280               | 2750       | 1888 | 2860  | 2952           | 3681      | 4701                                              | 12771                                 | 6717      | 2106      | 1742                          | 10.1 |
| 0.98         4900         2540         14168         8110         2340         1932         4108         2575         4767           0.93         3800         2580         4565         13334         9400         2360         1846         3575         2753         4133           0.99         3500         2560         4565         13234         9400         2360         1370         2203         3413         2203           0.99         3500         5560         4500         13700         7100         1990         1896         3571         2344           0.99         4300         2560         4600         13702         800         1890         1860         3673         2503         3561           0.99         4300         2560         4600         13702         800         1890         1868         3541         203         3560           1.00         3760         2460         13702         8700         1860         1774         3800         2100         4100         3741           1.00         2400         2100         13702         8570         1560         1774         3802         2100         3910         3741     <                                                                                                                                                                                                                                                                                                                                                                                                                               | 0    | 1.00 | 3900  | 2940           | 4320      | 4580        | 12716                     | 7900               | 2340       | 1734 | 3902  | 2941           | 4322      | 4582                                              | 12721                                 | 7903      | 2341      | 1735                          | 0.0  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1    | 0.98 | 4900  | 2640           | 4990      | 6540        | 14168                     | 8100               | 2340       | 1932 | 4108  | 2575           | 4767      | 4550                                              | 13818                                 | 7900      | 2282      | 1884                          | 8.2  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3    | 0.93 | 3800  | 2380           | 4560      | 4565        | 13534                     | 9400               | 2380       | 1846 | 3517  | 2203           | 4220      | 3895                                              | 12525                                 | 7675      | 2203      | 1708                          | 10.6 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4    | 0.88 | 4200  | 2660           | 3900      | 5875        | 13904                     | 8500               | 2460       | 1896 | 3675  | 2328           | 3413      | 4453                                              | 12166                                 | 7237      | 2016      | 1659                          | 14.9 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5    | 66.0 | 3350  | 2260           | 3960      | 5265        | 12628                     | 9049               | 2360       | 1722 | 3310  | 2233           | 3912      | 4028                                              | 12475                                 | 7515      | 2065      | 1701                          | 8.3  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9    | 0.97 | 4000  | 2340           | 3560      | 4580        | 12584                     | 10000              | 2340       | 1716 | 3730  | 2271           | 3454      | 4444                                              | 12210                                 | 7271      | 1954      | 1665                          | 10.0 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2    | 1.00 | 2800  | 3440           | 3220      | 5680        | 13200                     | 7100               | 1990       | 1800 | 2800  | 3440           | 3220      | 5680                                              | 13200                                 | 7100      | 1990      | 1800                          | 0.0  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6    | 0.98 | 3140  | 3000           | 2980      | 6000        | 11000                     | 6550               | 2460       | 1500 | 3062  | 2764           | 2906      | 4372                                              | 10513                                 | 6388      | 2026      | 1434                          | 8.6  |
| 1.00 $3750$ $2460$ $3050$ $6480$ $13156$ $8570$ $1560$ $1774$ $3750$ $2460$ $3050$ $1.00$ $3800$ $2150$ $3990$ $3560$ $13006$ $6600$ $1820$ $1774$ $3800$ $2150$ $3990$ $1.00$ $2400$ $2100$ $4100$ $4695$ $13244$ $7850$ $2400$ $2110$ $4100$ $1.00$ $2400$ $2100$ $3540$ $13816$ $8550$ $2140$ $3810$ $2140$ $3410$ $0.95$ $4300$ $2140$ $3184$ $3250$ $13816$ $8550$ $2400$ $2140$ $2140$ $3410$ $0.95$ $4300$ $2150$ $2340$ $2380$ $1352$ $2400$ $2340$ $2340$ $2340$ $2340$ $2340$ $2340$ $2340$ $2340$ $2340$ $2340$ $2340$ $2340$ $2340$ $2340$ $2340$ $2340$ $2340$ $2360$ $2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0    | 0.99 | 4300  | 2050           | 3560      | 4600        | 13702                     | 8000               | 1890       | 1868 | 3541  | 2039           | 3541      | 4392                                              | 13051                                 | 7542      | 1817      | 1780                          | 5.7  |
| 100 $3800$ $2150$ $3990$ $3560$ $13006$ $6600$ $1850$ $1774$ $3800$ $2150$ $3990$ $1100$ $2900$ $3380$ $5600$ $1320$ $2900$ $2830$ $2900$ $3144$ $7850$ $2600$ $1320$ $2900$ $2833$ $2900$ $2830$ $2900$ $2830$ $2900$ $2830$ $2900$ $2940$ $2940$ $100$ $3400$ $2140$ $3940$ $3550$ $13216$ $3340$ $2140$ $3940$ $2940$ $2940$ $0.95$ $4300$ $2140$ $3990$ $5500$ $13316$ $550$ $1716$ $3550$ $2940$ $2940$ $0.99$ $4700$ $2130$ $2950$ $13716$ $5700$ $2940$ $2940$ $2940$ $0.99$ $3750$ $2930$ $5500$ $11176$ $6700$ $254$ $2841$ $3847$ $100$ $2100$ $2350$ $13746$ $2360$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2    | 1.00 | 3750  | 2460           | 3050      | 6480        | 13156                     | 8570               | 1560       | 1794 | 3750  | 2460           | 3050      | 6480                                              | 13156                                 | 8570      | 1560      | 1794                          | 0.0  |
| 1.00 $2900$ $3780$ $9680$ $6500$ $1900$ $1320$ $2900$ $2830$ $2900$ $2830$ $2900$ $2100$ $4100$ $2100$ $4100$ $2100$ $4100$ $2100$ $4100$ $2100$ $4100$ $2100$ $4100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$ $2100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3    | 1.00 | 3800  | 2150           | 3990      | 3560        | 13006                     | 6600               | 1850       | 1774 | 3800  | 2150           | 3990      | 3560                                              | 13006                                 | 6600      | 1850      | 1774                          | 0.0  |
| 1.00 $2400$ $2100$ $4100$ $4695$ $13244$ $7850$ $2600$ $1806$ $2400$ $2100$ $4100$ $1.00$ $3400$ $2140$ $3940$ $3540$ $3536$ $13316$ $8350$ $2140$ $1884$ $3400$ $2140$ $3940$ $0.99$ $3600$ $2900$ $3485$ $5360$ $12312$ $8950$ $2900$ $2343$ $2341$ $3444$ $1.00$ $3600$ $2340$ $13316$ $8150$ $2360$ $13940$ $2344$ $34725$ $4744$ $1.00$ $3600$ $2340$ $13376$ $8940$ $2340$ $13376$ $2344$ $347$ $2380$ $1.00$ $3200$ $2300$ $3370$ $13376$ $8940$ $2360$ $2390$ $2360$ $2391$ $3444$ $1.00$ $3200$ $2310$ $13376$ $8940$ $2360$ $2344$ $3847$ $1.00$ $2700$ $2990$ $2360$ </td <td>4</td> <td>1.00</td> <td>2900</td> <td>2830</td> <td>2900</td> <td>3780</td> <td>9680</td> <td>6500</td> <td>1900</td> <td>1320</td> <td>2900</td> <td>2830</td> <td>2900</td> <td>3780</td> <td>9680</td> <td>6500</td> <td>1900</td> <td>1320</td> <td>0.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4    | 1.00 | 2900  | 2830           | 2900      | 3780        | 9680                      | 6500               | 1900       | 1320 | 2900  | 2830           | 2900      | 3780                                              | 9680                                  | 6500      | 1900      | 1320                          | 0.0  |
| 1.00 $3400$ $2140$ $3940$ $3540$ $13816$ $8350$ $2140$ $3940$ $0.99$ $3600$ $2900$ $3485$ $5360$ $1284$ $200$ $2360$ $1716$ $3558$ $2591$ $3444$ $0.99$ $3600$ $2900$ $3485$ $5360$ $11176$ $6700$ $2550$ $1716$ $3558$ $2591$ $3444$ $0.99$ $3600$ $2340$ $2980$ $41360$ $11176$ $6700$ $2650$ $1524$ $3600$ $2340$ $2980$ $0.99$ $3750$ $2340$ $3990$ $3550$ $13622$ $7900$ $2340$ $1858$ $2725$ $4744$ $0.99$ $3750$ $2340$ $31372$ $5990$ $33694$ $2312$ $3943$ $3550$ $1.00$ $4100$ $1930$ $3550$ $13922$ $6850$ $1630$ $1824$ $3260$ $2380$ $3060$ $1.00$ $2700$ $2900$ $3780$ $11528$ $7896$ $2360$ $1376$ $2380$ $3694$ $2312$ $1.00$ $2700$ $2900$ $3740$ $1824$ $3260$ $2380$ $3960$ $3960$ $1.00$ $2700$ $2900$ $3760$ $11704$ $5230$ $11630$ $3766$ $2900$ $2900$ $2360$ $11704$ $5230$ $11630$ $1270$ $2900$ $2900$ $2900$ $2360$ $2360$ $11704$ $5236$ $1176$ $2720$ $2990$ $2900$ $2360$ $2360$ $11704$ $5236$ $1956$ $2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ~    | 1.00 | 2400  | 2100           | 4100      | 4695        | 13244                     | 7850               | 2600       | 1806 | 2400  | 2100           | 4100      | 4695                                              | 13244                                 | 7850      | 2600      | 1806                          | 0.0  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6    | 1.00 | 3400  | 2140           | 3940      | 3540        | 13816                     | 8350               | 2140       | 1884 | 3400  | 2140           | 3940      | 3540                                              | 13816                                 | 8350      | 2140      | 1884                          | 0.0  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0    | 0.99 | 3600  | 2900           | 3485      | 5360        | 12584                     | 9200               | 2360       | 1716 | 3558  | 2591           | 3444      | 4597                                              | 12436                                 | 7529      | 2168      | 1696                          | 7.7  |
| 1.00 $3600$ $2340$ $2980$ $4360$ $11176$ $6700$ $2650$ $1524$ $3600$ $2340$ $2980$ $0.99$ $3750$ $2340$ $3990$ $3590$ $13622$ $7900$ $2340$ $1858$ $3694$ $2312$ $3943$ $1.00$ $4100$ $1930$ $3550$ $6500$ $13376$ $8040$ $2380$ $1630$ $1908$ $4100$ $1930$ $3550$ $1.00$ $3260$ $2380$ $3060$ $6100$ $13376$ $8040$ $2380$ $1824$ $2380$ $3060$ $1.00$ $2700$ $2900$ $2900$ $3780$ $11528$ $7080$ $2460$ $1572$ $2700$ $2900$ $2900$ $2900$ $3780$ $11528$ $7080$ $2460$ $1572$ $2700$ $2900$ $2900$ $0.94$ $4200$ $2900$ $2900$ $3780$ $11704$ $5230$ $14520$ $7896$ $3225$ $2484$ $3847$ $0.94$ $4200$ $2950$ $3690$ $11704$ $5900$ $1890$ $1596$ $3691$ $2595$ $4204$ $0.98$ $4100$ $3700$ $2900$ $5650$ $1596$ $3691$ $2556$ $4800$ $2800$ $1.00$ $3700$ $2900$ $2900$ $1900$ $1692$ $3690$ $2900$ $2900$ $0.98$ $4100$ $2980$ $2650$ $12232$ $5000$ $1900$ $1668$ $2860$ $2050$ $1.00$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1    | 0.95 | 4300  | 3500           | 4990      | 6190        | 15312                     | 8950               | 2900       | 2088 | 4088  | 2725           | 4744      | 5015                                              | 14087                                 | 8508      | 2369      | 1921                          | 9.9  |
| 0.99 $3750$ $2340$ $3990$ $3590$ $13622$ $7900$ $2340$ $1858$ $3694$ $2312$ $3943$ $1.00$ $4100$ $1930$ $3550$ $6500$ $13922$ $6850$ $1630$ $1908$ $4100$ $1930$ $3550$ $1.00$ $3260$ $2380$ $3060$ $6100$ $13376$ $8040$ $2380$ $1824$ $3260$ $2380$ $3060$ $1.00$ $2700$ $2900$ $2900$ $3780$ $11528$ $7080$ $2460$ $1572$ $2700$ $2900$ $2900$ $0.98$ $3600$ $3360$ $3940$ $5230$ $14520$ $7896$ $2360$ $1980$ $3225$ $2484$ $3847$ $0.94$ $4200$ $2850$ $4450$ $4750$ $4900$ $11704$ $5900$ $1890$ $1596$ $3691$ $2595$ $4204$ $0.94$ $4200$ $2850$ $4450$ $11704$ $5230$ $1824$ $3847$ $3847$ $0.94$ $4200$ $2850$ $4800$ $11704$ $5200$ $1890$ $1596$ $3691$ $2595$ $4204$ $0.98$ $4100$ $3700$ $2900$ $6800$ $11704$ $5900$ $1890$ $1596$ $3370$ $2560$ $4800$ $1.00$ $3700$ $2900$ $2900$ $12302$ $7550$ $1678$ $3700$ $2900$ $2900$ $1.00$ $3700$ $2900$ $2900$ $12302$ $750$ $2560$ $1692$ $3050$ $2800$ $1.00$ $2800$ $2960$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5    | 1.00 | 3600  | 2340           | 2980      | 4360        | 11176                     | 6700               | 2650       | 1524 | 3600  | 2340           | 2980      | 4360                                              | 11176                                 | 6700      | 2650      | 1524                          | 0.0  |
| 1.00 $4100$ $1930$ $3550$ $6500$ $13992$ $6850$ $1630$ $1908$ $4100$ $1930$ $3550$ $1.00$ $3260$ $2380$ $3060$ $6100$ $13376$ $8040$ $2380$ $8246$ $3260$ $2900$ $2900$ $1.00$ $2700$ $2900$ $2900$ $3780$ $11528$ $7896$ $2360$ $1572$ $2700$ $2900$ $2900$ $0.98$ $3600$ $3360$ $3940$ $5230$ $14520$ $7896$ $2360$ $1980$ $3225$ $2484$ $3847$ $0.94$ $4200$ $2850$ $4450$ $14900$ $14344$ $8280$ $2340$ $1956$ $3691$ $2595$ $4204$ $0.94$ $4200$ $2850$ $4450$ $11704$ $5900$ $1890$ $1596$ $3691$ $2595$ $4204$ $0.98$ $4100$ $3700$ $3900$ $6800$ $11704$ $5900$ $1890$ $1596$ $3339$ $2844$ $3179$ $0.98$ $4100$ $3700$ $2900$ $6800$ $11704$ $5900$ $1890$ $1596$ $3030$ $2900$ $1.00$ $3700$ $2050$ $4800$ $12302$ $7550$ $1678$ $3700$ $2050$ $4800$ $1.00$ $2900$ $2900$ $2900$ $12302$ $7500$ $2900$ $2900$ $2800$ $2800$ $1.00$ $2900$ $2900$ $2900$ $12302$ $7500$ $2860$ $2056$ $4800$ $1.00$ $2900$ $2900$ $2900$ $2900$ <t< td=""><td>ŝ</td><td>66.0</td><td>3750</td><td>2340</td><td>3990</td><td>3590</td><td>13622</td><td>7900</td><td>2340</td><td>1858</td><td>3694</td><td>2312</td><td>3943</td><td>3548</td><td>13374</td><td>7807</td><td>2054</td><td>1824</td><td>2.1</td></t<>                                                                                                                                                                                                                                                                                                                                                                                               | ŝ    | 66.0 | 3750  | 2340           | 3990      | 3590        | 13622                     | 7900               | 2340       | 1858 | 3694  | 2312           | 3943      | 3548                                              | 13374                                 | 7807      | 2054      | 1824                          | 2.1  |
| 1.00 $3260$ $2380$ $3060$ $6100$ $13376$ $8040$ $2380$ $1824$ $3260$ $2380$ $3060$ $1.00$ $2700$ $2900$ $2900$ $3780$ $11528$ $7896$ $2546$ $1572$ $2700$ $2900$ $2900$ $0.98$ $3600$ $3360$ $3940$ $5230$ $14520$ $7896$ $2360$ $1980$ $22900$ $2900$ $0.94$ $4200$ $2850$ $4450$ $4900$ $11704$ $5900$ $1890$ $1596$ $3691$ $2595$ $4204$ $0.98$ $4100$ $3700$ $3900$ $6800$ $11704$ $5900$ $1890$ $1596$ $3691$ $2595$ $4204$ $0.98$ $4100$ $3700$ $3900$ $6800$ $11704$ $5900$ $1890$ $1596$ $3039$ $2844$ $3179$ $0.98$ $4100$ $3700$ $2900$ $6800$ $11704$ $5900$ $1890$ $1596$ $3039$ $2844$ $3179$ $1.00$ $3700$ $2050$ $4800$ $12302$ $7550$ $1678$ $3770$ $2596$ $4800$ $1.00$ $2900$ $2900$ $2900$ $12232$ $5000$ $1900$ $1668$ $2890$ $2860$ $2860$ $20.9$ $3600$ $2950$ $3695$ $12232$ $5000$ $2900$ $2990$ $2900$ $2900$ $1.00$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $1.00$ $2860$ $2056$ $12256$ <t< td=""><td>4</td><td>1.00</td><td>4100</td><td>1930</td><td>3550</td><td>6500</td><td>13992</td><td>6850</td><td>1630</td><td>1908</td><td>4100</td><td>1930</td><td>3550</td><td>6500</td><td>13992</td><td>6850</td><td>1630</td><td>1908</td><td>0.0</td></t<>                                                                                                                                                                                                                                                                                                                                                                                               | 4    | 1.00 | 4100  | 1930           | 3550      | 6500        | 13992                     | 6850               | 1630       | 1908 | 4100  | 1930           | 3550      | 6500                                              | 13992                                 | 6850      | 1630      | 1908                          | 0.0  |
| 1.00 $2700$ $2900$ $3780$ $11528$ $7080$ $2460$ $1572$ $2700$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2800$ $2800$ $2800$ $2800$ $2800$ $2800$ $2800$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$ $2900$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5    | 1.00 | 3260  | 2380           | 3060      | 6100        | 13376                     | 8040               | 2380       | 1824 | 3260  | 2380           | 3060      | 6100                                              | 13376                                 | 8040      | 2380      | 1824                          | 0.0  |
| 0.98 $3600$ $3360$ $3940$ $5230$ $14520$ $7896$ $2360$ $1980$ $3225$ $2484$ $3847$ $0.94$ $4200$ $2850$ $4450$ $4900$ $14344$ $8280$ $2340$ $1956$ $3691$ $2595$ $4204$ $0.98$ $4100$ $3700$ $3900$ $6800$ $11704$ $5900$ $1890$ $1596$ $3691$ $2595$ $4204$ $1.00$ $3700$ $2050$ $4800$ $3690$ $12302$ $7670$ $1678$ $3770$ $2050$ $4800$ $1.00$ $3700$ $2800$ $12302$ $7670$ $1678$ $3790$ $2840$ $2800$ $1.00$ $3900$ $2400$ $3695$ $12232$ $5000$ $1900$ $1668$ $2890$ $2860$ $3050$ $1.00$ $2860$ $2950$ $15356$ $9300$ $2860$ $2060$ $3050$ $1.00$ $2160$ $2550$ $1668$ <td>9</td> <td>1.00</td> <td>2700</td> <td>2900</td> <td>2900</td> <td>3780</td> <td>11528</td> <td>7080</td> <td>2460</td> <td>1572</td> <td>2700</td> <td>2900</td> <td>2900</td> <td>3780</td> <td>11528</td> <td>7080</td> <td>2460</td> <td>1572</td> <td>0.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9    | 1.00 | 2700  | 2900           | 2900      | 3780        | 11528                     | 7080               | 2460       | 1572 | 2700  | 2900           | 2900      | 3780                                              | 11528                                 | 7080      | 2460      | 1572                          | 0.0  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2    | 0.98 | 3600  | 3360           | 3940      | 5230        | 14520                     | 7896               | 2360       | 1980 | 3225  | 2484           | 3847      | 3949                                              | 13806                                 | 7710      | 2305      | 1883                          | 8.6  |
| 0.98         4100         3700         3900         6800         11704         5900         1890         1596         3039         2844         3179           1.00         3700         2050         4800         3690         12302         7650         2350         1678         3700         2050         4800           1.00         3700         2050         4800         3690         12302         7650         2350         1678         3700         2050         4800           1.00         3900         2400         2800         12312         5000         1900         1668         2890         2860         2800           1.00         2890         2860         3050         12232         5000         1900         1668         2860         2860         3050           0.96         3600         2155         9300         2860         2094         3446         2659         4308           1.00         4000         2150         2550         1644         4000         2150         2950           1.00         4000         2150         7717         2278         1766         3558         2452         3609           .0.03                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~    | 0.94 | 4200  | 2850           | 4450      | 4900        | 14344                     | 8280               | 2340       | 1956 | 3691  | 2595           | 4204      | 4438                                              | 13549                                 | 7821      | 2210      | 1848                          | 6.8  |
| 1.00         3700         2050         4800         3690         12302         7650         2350         1678         3700         2050         4800           1.00         3900         2400         2800         6545         12408         7200         2670         1692         3900         2400         2800           1.00         3900         2400         2800         15350         9300         2670         1692         3900         2400         2800           1.00         2890         2860         3050         4695         15356         9300         2860         2094         3446         2659         4308           0.05         3600         2150         3695         12056         6600         2550         1644         4000         2150         2950           1.00         4000         2150         3695         12055         6600         2550         1644         4000         2150         2950           .         0.03         680         3704         5057         12953         7717         2278         1766         3558         2452         3609           .         0.03         682         1077         354                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6    | 0.98 | 4100  | 3700           | 3900      | 6800        | 11704                     | 5900               | 1890       | 1596 | 3039  | 2844           | 3179      | 4447                                              | 11476                                 | 5785      | 1853      | 1565                          | 13.6 |
| 1.00         3900         2400         2800         6545         12408         7200         2670         1692         3900         2400         2800           1.00         2890         2860         3050         4695         112232         5000         1900         1668         2890         2860         3050           0.96         3600         2980         4500         15356         9300         2860         2094         3446         2659         4308           1.00         4000         2150         2695         12056         6600         2550         1644         4000         2150         2950           .         0.98         3762         2600         3704         5067         12953         7717         2278         1766         3558         2452         3609           .         0.03         682         12953         7717         2278         1766         3558         2452         3609           .         0.03         682         1072         354         164         565         351         582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0    | 1.00 | 3700  | 2050           | 4800      | 3690        | 12302                     | 7650               | 2350       | 1678 | 3700  | 2050           | 4800      | 3690                                              | 12302                                 | 7650      | 2350      | 1678                          | 0.0  |
| 1.00         2890         2860         3050         4695         12232         5000         1668         2890         2860         3050           0.96         3600         2980         4500         4695         15356         9300         2860         2094         3446         2659         4308           1.00         4000         2150         2895         12056         6600         2550         1644         4000         2150         2950           .         0.98         3762         2600         3704         5067         12953         7717         2278         1766         3558         2452         3609           .         0.03         682         485         635         1077         354         164         565         351         582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H    | 1.00 | 3900  | 2400           | 2800      | 6545        | 12408                     | 7200               | 2670       | 1692 | 3900  | 2400           | 2800      | 6545                                              | 12408                                 | 7200      | 2670      | 1692                          | 0.0  |
| 0.96         3600         2980         4500         4695         15356         9300         2860         2094         3446         2659         4308           1.00         4000         2150         2950         3695         12056         6600         2550         1644         4000         2150         2950           .         0.98         3762         2600         3704         5067         12953         7717         2278         1766         3558         2452         3609           .         0.03         682         485         635         1077         354         164         565         351         582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5    | 1.00 | 2890  | 2860           | 3050      | 4695        | 12232                     | 5000               | 1900       | 1668 | 2890  | 2860           | 3050      | 4695                                              | 12232                                 | 5000      | 1900      | 1668                          | 0.0  |
| 1.00         4000         2150         2950         3695         12056         6600         2550         1644         4000         2150         2950           .         0.98         3762         2600         3704         5067         12953         7717         2278         1766         3558         2452         3609           .         0.03         682         485         635         1072         354         164         565         351         582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4    | 0.96 | 3600  | 2980           | 4500      | 4695        | 15356                     | 9300               | 2860       | 2094 | 3446  | 2659           | 4308      | 4495                                              | 14242                                 | 8903      | 2337      | 1942                          | 6.7  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5    | 1.00 | 4000  | 2150           | 2950      | 3695        | 12056                     | 6600               | 2550       |      | 4000  | 2150           | 2950      | 3695                                              | 12056                                 | 6600      | 2550      | 1644                          | 0.0  |
| . 0.03 682 485 635 1072 1199 1077 354 164 <b>565 351 582</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ave. | 0.98 | 3762  | 2600           | 3704      | 5067        | 12953                     | 7117               | 2278       |      | 3558  | 2452           | 3609      | 4637.3                                            | 12645                                 | 7337.3    | 2143.7    | 1724                          | 24.8 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ū.   | 0.03 | 682   | 485            | 635       | 1072        | 1199                      | 1077               | 354        | 164  | 565   | 351            | 582       | 948.3                                             | 1007                                  | 788.9     | 294.4     | 137                           | 20.0 |

| Input                    | Presentorchardists<br>(kg CO <sub>2eq.</sub> ha <sup>-1</sup> ) | Targetorchardists (kg CO <sub>2eq.</sub> ha <sup>-1</sup> ) | GHG reduction<br>(kg CO <sub>2eq.</sub> ha <sup>-1</sup> ) |
|--------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|
| 1. Machinery             | 274                                                             | 269                                                         | 5                                                          |
| 2. Diesel fuel           | 389                                                             | 374                                                         | 15                                                         |
| 3. Chemical fertilizers  |                                                                 |                                                             |                                                            |
| (a) Nitrogen             | 193                                                             | 189                                                         | 4                                                          |
| (b) Phosphate $(P_2O_5)$ | 19.6                                                            | 19.3                                                        | 0.3                                                        |
| (c) Potassium ( $K_2O$ ) | 35.1                                                            | 34.5                                                        | 0.6                                                        |
| 4. Pesticides            |                                                                 |                                                             |                                                            |
| (a) Insecticide          | 51.9                                                            | 49.5                                                        | 2.4                                                        |
| (b) Herbicide            | 10.7                                                            | 10.2                                                        | 0.5                                                        |
| (c) Fungicide            | 38.2                                                            | 36.4                                                        | 1.8                                                        |
| 5. Electricity           | 255                                                             | 239                                                         | 16                                                         |
| Total GHG emissions      | 1266                                                            | 1221                                                        | 45                                                         |

Table 7. Amounts of GHG emission for presentand target orchardists

Total reduction of GHG emissions in nectarine production: 45 kgCO<sub>2eq</sub>.ha<sup>-1</sup>

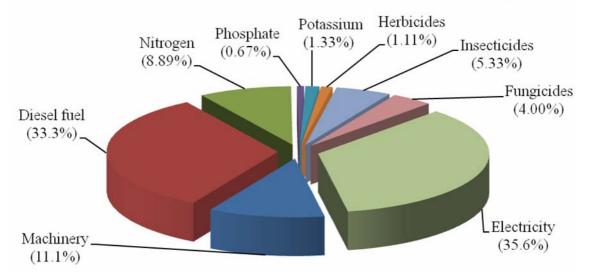



Figure 2. The share of each input for GHG emission reduction of nectarine production

# 4. Conclusions

Like most stone fruits, nectarines thrive in a Mediterranean climate of long, hot summers and cool, wet winters. Good climatic condition in Sari region induced to improve nectarine production in recent years. In this research, an energy analysis for nectarine production in Sari region of Iran was conducted to discriminate efficient nectarine orchards from inefficient and GHG emissions reduction using DEA approach. Based on study results, following conclusions were drawn:

- 1. From the total of 45 nectarine orchards considered for the analysis, 24% and 27% were found to be technically and pure technically efficient, respectively.
- 2. The average values of technical, pure technical and scale efficiency scores of orchards were found to be 0.85, 0.99 and 0.87, respectively.
- 3. The energy saving target ratio for nectarine production was calculated as 1309 MJ ha<sup>-1</sup>, indicating that by following the recommendations resulted from this study, about 3.25% of total input energy could be saved while holding the constant level of yield. Also the electricity energy has highest potential for improvement by 6.49%. Also from total saved energy electricity had highest share by 24.8%.
- 4. By optimization of energy consumption, the energy ratio, energy productivity, specific energy and net energy can improved with 3.68%, 2.78%, -3.57% and 9.03%, respectively.

5. The GHG emission of present and optimum units was found to be as 1266 and 1221 kgCO<sub>2eq</sub>.ha<sup>-1</sup>, respectively. The potential of GHG reduction was calculated about 45 kgCO<sub>2eq</sub>.ha<sup>-1</sup>. Also, the highest share of potential of GHG reduction was belonged to electricity in nectarine production. According to the recommendations of this study, optimization of energy inputs can reduce GHG emission in agricultural systems, significantly.

# Acknowledgment

The financial support provided by the Khuzestan Ramin Agricultural and Natural Resources University, Iran, is duly acknowledged. Also, I want to express my deep appreciation of all Mr. Kamran Taromi's efforts to help me revise the study.

#### References

- [1] FAO (Food and Agriculture Organization of the United Nations), 2013. http://faostat.fao.org/site/339/default.aspx.
- [2] Canakci, M., Akinci, I., 2006. Energy use pattern analyses of greenhouse vegetable production. Energy Conversion and Management 31, 1243-1256.
- [3] Banaeian, N., Zangeneh, M., 2011. Study on energy efficiency in corn production of Iran. Energy 36,5394-5402.
- [4] Karkacier, O., Goktolga, ZG., 2005. Input-output analysis of energy in agriculture. Energy Conversion and Management 46 (9-10), 1513-1521.
- [5] Singh, G., Singh, S., Singh, J., 2004. Optimization of energy inputs for wheat crop in Punjab. Energy Conversion and Management 45 (3), 453-465.
- [6] Mohammadi, A., Rafiee, S., Mohtasebi, S.S., Mousavi-Avval, S.H., Rafiee, H., 2011. Energy efficiency improvement and input cost saving in kiwifruit production using Data Envelopment Analysis approach. Renewable Energy 36, 2573-2579.
- [7] Khan, S., Khan, MA., Hanjra, MA., Mu, J., 2009. Pathways to reduce the environmental footprints of water and energy inputs in food production. Food Policy 34, 141-149.
- [8] Khoshnevisan, B., Rafiee, S., Omid, M., Yousefi, M., Movahedi, M., 2013b. Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks. Energy 52, 333-338.
- [9] Nabavi-Pelesaraei, A., Abdi, R., Rafiee, S., Mobtaker, HG., 2013. Optimization of energy required and greenhouse gas emissions analysis for orange producers using data envelopment analysis approach. Journal of Cleaner Production http://dx.doi.org/10.1016/j.jclepro.2013.08.019.
- [10] Khoshnevisan, B., Rafiee, S., Omid, M., Mousazadeh, H., 2013a. Reduction of CO2 emission by improving energy use efficiency of greenhouse cucumber production using DEA approach. Energy 55, 676-682.
- [11] Ministry of Jihad-e-Agriculture of Iran, 2013. Annual Agricultural Statistics.www.maj.ir (in Persian).
- [12] Kizilaslan, H., 2009. Input-output energy analysis of cherries production in Tokat Province of Turkey. Applied Energy 86, 1354-1358.
- [13] Mobtaker, H.G., Keyhani, A., Mohammadi, A., Rafiee, S., Akram, A., 2010. Sensitivity analysis of energy inputs for barley production. Agriculture, Ecosystems and Environment 137, 367-372.
- [14] Barber, A.A., 2003. Case study of total energy and carbon indicators for New Zealand arable and outdoor vegetable production. Agricultural Engineering Consultant Agril INK. New Zealand Ltd.
- [15] Mousavi-Avval, S.H., Rafiee, S., Jafari, A., Mohammadi, A., 2011a. Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach. Applied Energy 88 (11), 3765-3772.
- [16] Unakitan, G., Hurma, H., Yilmaz, F., 2010. An analysis of energy use efficiency of canola production in Turkey. Energy 35, 3623-3627.
- [17] Pahlavan, R., Omid, M., Akram, A., 2011. Energy use efficiency in greenhouse tomato production in Iran. Energy 36, 6714-6719.
- [18] Qasemi-Kordkheili, P., Kazemi, N., Hemmati, A., Taki, M., 2013. Energy input-output and economic analysis for soybean production in Mazandaran province of Iran. Elixir Agriculture 56, 13246-13251.
- [19] Rafiee, S., Mousavi-Avval, SH., Mohammadi, A., 2010. Modeling and sensitivity analysis of energy inputs for apple production in Iran. Energy 35, 3301-3306.

- [20] Ozkan, B., Akcaoz, H., Fert, C., 2004. Energy input-output analysis in Turkish agriculture. Renewable Energy 29, 39-51.
- [21] Kitani, O., 1999. CIGR Handbook of Agricultural Engineering. In: Energy and Engineering, vol. 5. ASAE Publications, St. Joseph, MI.
- [22] Ajabshirchi, Y., 2013. Energy Input-Output, Optimization of energy consumption with DEA approach for corn silage production in Iran. International Journal of Agriculture and Crop Sciences 5 (1), 80-88.
- [23] Mobtaker, H.G., Akram, A., Keyhani, A., Mohammadi, A., 2012. Optimization of energy required for alfalfa production using data envelopment analysis approach. Energy for Sustainable Development 16, 242-248.
- [24] Cooper, W.W., Seiford, L.M., Tone, K., 2004. Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software. Massachusetts, USA: Kluwer Academic Publishers.
- [25] Mohammadi, A., Rafiee, S., Jafari, A., Delgaard, T., Knudsen, M.T., Keyhani, A., Mousavi-Avval, S.H., Hermansen, E.J., 2013. Potential greenhouse gas emission reductions in soybean farming: a combined use of Life Cycle Assessment and data envelopment Analysis. Journal of Cleaner Production 54, 89-100.
- [26] Avkiran, N.K., 2001. Investigating technical and scale efficiencies of Australian Universities through Data Envelopment Analysis. Socio-Economic Planning Sciences 35 (1), 57-80.
- [27] Barnes, A.P., 2006. Does multi-functionality affect technical efficiency? A non-parametric analysis of the Scottish dairy industry. Journal of Environmental Management 80 (4), 287-294.
- [28] Jensen, P.A., Bard, J.F., 2002. The Dual Linear Program, LP Methods.S3.
- [29] Mousavi-Avval, S.H., Rafiee, S., Mohammadi, A., 2011b. Optimization of energy consumption and input costs for apple production in Iran. Energy 36, 909-916.
- [30] Nassiri, S.M., Singh, S., 2009. Study on energy use efficiency for paddy crop using data envelopment analysis (DEA) technique. Applied Energy 86, 1320-1325.
- [31] Sarica, K., Or, I., 2007. Efficiency assessment of Turkish power plants using data envelopment analysis. Energy 32 (8), 1484-1499.
- [32] Lal, R., 2004. Carbon emission from farm operations. Environment International 30 (7), 981-990.
- [33] Dyer, J.A., Desjardins, R.L., 2006. Carbon dioxide emissions associated with the manufacturing of tractors and farm machinery in Canada. Biosystems Engineering 93 (1), 107-118.
- [34] Dyer, J.A., Desjardins, R.L., 2003. Simulated farm fieldwork, energy consumption and related greenhouse gas emissions in Canada. Biosystems Engineering 85 (4), 503-513.
- [35] Pishgar-Komleh, SH., Omid, M., Heidari, MD., 2013. On the study of energy use and GHG (greenhouse gas) emissions in greenhouse cucumber production in Yazd province. Energy 59, 63-71.
- [36] Pahlavan, R., Omid, M., Rafiee, S., Mousavi-Avval, S.H., 2012. Optimization of energy consumption for rose production in Iran. Energy for Sustainable Development 16, 236-241.



**Peyman Qasemi-Kordkheili** is M.Sc graduate student of agricultural mechanization from the Khuzestan Ramin Agricultural and Natural Resources University. He is currently researcher at same university in subjects related to energy in agriculture



Ashkan Nabavi-Pelesaraei was born in 1990 in Tehran/Iran, received his B.Sc. Degree in Agricultural Mechanization Engineering from the University of Guilan; Iran, in 2012. He is now M.Sc. student in Agricultural Mechanization Engineering in the University of Tabriz under supervision of Dr. Reza Abdi and under advision of Prof. ShahinRafiee. His main research interests are energy issues and its environmental problems; modeling and simulation and renewable energy