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Abstract 

A Micro-scale pipe conveying fluid and the functionally graded (FG) materials have many potential 

applications. In this article, an analytical solution is offered free vibration for a functionally graded (FG) 

material micro-pipe conveying fluid. On the basis of the Euler beam model and the modified coupled stress 

theory. The properties of the material are changed constantly across the micro-pipes thickness and depend 

on power law distribution. Utilized Hamilton’s principle to get an equation of motion for three end 

boundary conditions (Simply supported, clamped-clamped and cantilever micro-pipes).The differential 

transformation (DT) method is utilized to obtain the solution for motion's equation and concerned boundary 

conditions. The effect of fluid flow velocity, the gradient index and parameter of the material length scale 

on the vibration and stability of fluid conveying FGM micro scale pipes are discussed. The results show 

that critical velocities and natural frequencies are increased hastily with the increase in the gradient index 

p. 

Copyright © 2018 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 

Pipe Conveying fluid is very important components for most engineering structures, a nuclear reactor, heat 

exchanger, marine risers, oil pipelines, microfluidic, Nano fluidic devices and others. Free Vibration 

analysis of the fluid conveying pipe has been closely studied in past decenniumes. 

The vibration problems of the pipe conveying fluid were analyzed through different methods. By reviewing 

the literature in this field, it was observed that there are many numerical and analytical methods used in 

solving vibration problems of this structures both in nonlinear and linear dynamics, like finite element (FE) 

method by Zhang, Gorman, and Reese [1], Galerkin's method by Sarkar, and Païdoussis [2], DQM by Qian 

and Wang [3] simplistic method by Wang and Liu [4]. Paidoudssis and Issid [5] showed the linear 

dynamics of the pipe conveying fluid using the Galerkin's method. Yun-dong and Yi-ren [6] developed 

vibrational iteration (VI) method for analysis free vibration conveying fluid in the pipe, and they are 

obtained the critical velocity of flow and frequency for fluid conveying pipe with many end conditions.  

The (DT) Method was first suggested for solving linear and nonlinear elementary value problems at the 

analysis of the electrical circuit based on the expansion of Taylor’s series by Zhou [7]. This method is an 
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effective and not complicated for solving the differential equations of linear and nonlinear. Zhang and 

Wang [8] analyzed a free vibration for pipe conveying fluid with many typical boundary conditions by 

employed the DTM. They have proved that the DT method has computational efficiency and high accuracy 

for vibration analysis in fluid conveying pipes and this method may be further extensive to the analysis of 

the response for static and the dynamic nonlinearly for fluid conveying pipes. The free vibration problem 

with various elastically restrained end conditions of a uniform beam was studied by Agboola [9] using 

Differential transformation (DT) method to solve the relevant initial boundary value problem. He has 

compared the vibration frequencies for the present method with those prophesied by Adomian 

decomposition and variational iteration methods. He has noted that the accuracy of natural frequencies is 

higher with increasing the term number N. and he has explained that differential transformation (DTM) 

has computational efficiency and high accuracy in the vibration problem for beam structure. Bozyigit et al 

[10] analyzed natural frequencies, modes shape and critical fluid velocity of the pipelines based on 

Timoshenko beam model by using DTM and ADM. They solved the equation of motion with different 

pipe end conditions using these methods. They were found that efficient and easy mathematical models 

when using these methods. Also, they found that the results of an analytical method (ANM) have a good 

agreement when compared with these two methods.  

Wang [11] developed the theoretical model for the vibration of microtube based on modified coupled stress 

theory and he was used (DQM) to solve the equation of motion. He was found that the vibration frequencies 

decrease with increasing internal flow velocities. Also, He was found that a microtube will be unstable by 

divergence in a critical flow velocity. Xia and Wang [12] and Ahangar et al. [13] used MCST to study the 

dynamic conduct of fluid conveying micro-pipes by using Timoshenko and Euler beam theories. They 

explained that a critical velocity and fundamental frequency would be size dependent when the outside 

diameter of micro-pipes are compared with the parameter of length scale. Wang et al [14], investigated the 

effects of microstructure and micro-flow on the flexural vibrations of fluid conveying microscale pipes. 

The results appeared that the effect of microstructure tends to stiffen the pipe system and hence increased 

the critical flow velocity; also, the results appeared that the velocity profile of flow tends to decrease a 

critical mean of flow velocity.  

A new material was used for the first time by Yamanouchi [15] these materials are functionally graded 

(FGM) that are microscopically inhomogeneous composite materials, where the mechanical properties 

alteration from the surface to another continuously. This is achieved by changes in the composition of the 

FGM continuously. Synthesis is different continuously with an alteration in the volume fraction of 

components. 

Loy et al [16] used functionally gradient material (FGM) because it has attracted a lot of attention as a new 

material and has sophisticated structural materials due to their heat-resistance characteristics. The 

characteristics are graduated in the thickness direction depending on a volume fraction power-law 

distribution. The eigenvalue governing equation was obtained using the Rayleigh method and the results 

appear that the frequency properties are identical to that observed for the homogeneous isotropic of 

cylindrical shells. The vibration analysis and instability problem of the spinning thin-walled beams with 

functionally graded (FG) materials was studied by Librescu [17]. A continuously graded change in the 

composition of the metal and ceramic phases through the beam thickness in expressions of a simple power 

law was implemented. 

The thermomechanical stability of thin-walled conveying fluid of a cantilevered pipe made from 

functionally graded and it loads through compressive axial force was investigated by Hosseini et al [18]. 

The pipe is formulated based on Rayleigh's theory and the extended Galerkin's method was used to solve 

the equations of motion. They investigated the effects of gradient index, compressive axial force, fluid 

mass ratio, fluid speed, and temperature Variable on the stability of thin-walled FGM pipe. Yang et al [19] 

evolved the theory of modified coupled stress (MCS) where in just one parameter of length scale appears 

in an equation, the torsion of the cylindrical bar and a pure bending of the flat plate of unlimited width 

were analyzed to interpret the effect of the modification. Thereafter Asghari et al. [20], Reddy [21], Nateghi 

et al [22] and Ansari et al [23] utilized MCST to investigate the mechanical behavior of FGM micro-beams. 

They investigated the natural frequency, critical buckling load, and the static deflection. They found that 

the size effect becomes stronger through the decreasing thickness. Akgöz and Civalek [24, 25] studied the 

free vibration of a single-layered graphene tablets and the axially functionally graded (FG) tapered 

Bernoulli-Euler microbeams based on a modified couple stress theory, respectively. Setoodeh and Afrahim 

[26] studied an analytical solution for size-dependent nonlinear vibration analysis for (FGM) microscale 
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pipe with strain gradient theory. They evidenced by results that the power law index and length scale 

parameter have a considerable effect on the critical velocity and natural frequency of the FG micro-pipes. 

Deng et al [27] investigated a free vibration and stability for fluid conveying multi-span FGM micro-pipe. 

The FGM micro-pipes which has variation continuously through-thickness direction in accordance with 

the power law. The hybrid method was advanced to find the vibration frequencies and stability. The effect 

of a number of supports, a parameter of length scale, and an exponent of volume fraction, on dynamic 

properties, were discussed. The results appeared that the fundamental frequencies determined by the theory 

of modified couple stress are greater than those acquired by using classical beam theory, also, the results 

showed that the critical velocities and natural frequencies increase with an increase in the exponent volume 

fraction (p) when it is lower than 10. 

Through the literature mentioned above, it was found that the articles available for study the behavior of 

FGM micropipe very little, in this paper, the stability and free vibration of micro-pipe made from a 

functionally graded (FG) material conveying fluid by utilizing differential transformation (DT) method are 

investigated. The governing equation is derived by using energy Hamilton’s principle with modified couple 

stress theory. Differential transform (DT) method is developed to find the vibration frequencies and mode 

shapes of the FG micro fluid conveying pipe for different end conditions. The results computed by a 

differential transformation (DT) method are compared with those in a published literature to verify the 

current method. The effects of different parameters such as volume fraction n and the parameter of length 

scale on the stability and free vibration of FGM micro-scale pipes conveying fluid are discussed. 

 

2.2 Model description and governing equations 

2.1 Material properties of FGM pipes 

In the present investigation, material properties of FG micro-pipes with a Length (L), the inner and outer 

radii are 𝑅𝑖 and 𝑅𝑜 respectively and cross-sectional area are presumed to be graduated in the thickness 

direction (h). U represents fluid flow velocity. The axial and cross displacements on midmost-axis are u 

and w, respectively as shown in Figures 1 and 2. Material properties are supposed to alteration through a 

thickness direction continuously. The mechanical materials properties used in this paper are expressed in 

Table 1 [27]. 

 

Table 1. Material properties of FG micro pipe. 

 

Materials E (GPa) 𝝆𝒑(kg/m3) ν 

Alumina 380 3800 0.23 

Aluminum 70 2700 0.23 

 

 
 

Figure 1. The Geometrical model of a fluid - conveying FGM micro-pipe. 

 

 
 

Figure 2. Micro pipe in three dimension. 
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Most researchers adopted sigmoid law, exponential law and power law to characterize the material 

properties variation. In this paper, FGM pipes with power law will be used. The volume fraction can be 

given as [28]. 

 

𝑉𝑚 = (
2𝑧+ℎ

2ℎ
)

𝑝
      𝑊ℎ𝑒𝑟𝑒 (0 ≤ 𝑝 ≤ ∞) (1) 

 

𝑉𝑐 = 1 − 𝑉𝑚 (2) 

 

Where p is the volume fraction exponent, is a real positive number and which describes the volume fraction 

profile; also, subscripts m and c indicate the inner and outer layers, respectively. A change of volume 

fraction 𝑉𝑖 with thickness direction for different values of exponents of volume fraction p is depicted in 

Figure 3, it can be seen that when the exponent p is supposed to be zero, FGM micro-pipe reduces to 

homogeneous micro pipe [28]. 

 

 
 

Figure 3. Variation of volume fraction with thickness direction. 

 

𝜌(𝑧) = 𝑉𝑐  𝜌𝑐 + 𝑉𝑚 𝜌𝑚 (3) 

 

𝐸(𝑧) = 𝑉𝑐𝐸𝑐 + 𝑉𝑚𝐸𝑚 (4) 

 

where ρ and E refer to the density and the Young’s modulus respectively.  

 

2.2 Mathematical formulation 

Based on Euler–Bernoulli beam theory, the offset field for an arbitrary point along the x and z axes can 

be written as: 

 

𝑢−(𝑥, 𝑧, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑧
𝜕𝑤(𝑥,𝑡)

𝜕𝑥
  (5) 

 

𝑤−(𝑥, 𝑧, 𝑡) = 𝑤(𝑧, 𝑡) (6) 

 

where (z) is a coordinate measured from the plane of a neutral axis and t denoted time. Assuming that 

micro-pipe is elastic, the relation of stress–strain is given by: 

 

𝜎𝑥𝑥 = 𝐸𝜀𝑥𝑥 (7) 

 

𝜀𝑥𝑥 = −𝑧
𝜕𝑤(𝑥,𝑡)

𝜕𝑥
 (8) 
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2.3 Modified couple stress theory 

The coupled stress theory is a more public form of the theories of higher order continuum, which looks the 

both of antisymmetric and uniform parts of higher order deformation gradients. The brief review of this 

theory was firstly presented by Xia W., and L. Wang and Ahangar Sonia et al [12, 13] respectively.  The 

expression of a strain energy U refer to the linear elastic material occupying zone Ωi with very small 

deformation is given by: 

 

𝑈 = ∑
1

2
∫(𝜎𝑖𝑗𝜀𝑖𝑗 + 𝜏𝑥𝑧𝜀𝑥𝑧 + 𝑚𝑥𝑦𝛾𝑥𝑦)𝑑Ω𝑖𝑠

𝑖  (9) 

 

𝑈 =
1

2
∫ ∫ [𝐸(𝑧)𝑧2 + 𝐺(𝑧)𝑙2 ] (

𝜕2𝑤

𝜕𝑥2 )
2

𝑑𝑥
𝐿

0
𝑑𝐴 (10) 

 

Or 

 

𝑈 =
1

2
∫ (𝐸𝐼𝑒𝑞 + 𝐺𝐴𝑒𝑞𝑙2)𝑑𝑥

𝐿

0
 (11) 

 

where 

 

𝐸𝐼𝑒𝑞 = ∫ ∫ 𝐸(𝑧)𝑧2𝑑𝑧𝑑𝑟
ℎ

2⁄

−ℎ
2⁄

2𝜋𝑅𝑚

0
 (12) 

 

𝐺𝐴𝑒𝑞 = ∫ ∫
𝐸(𝑧)

2(1+𝑣)

ℎ
2⁄

−ℎ
2⁄

2𝜋𝑅𝑚

0
𝑑𝑧𝑑𝑟 (13) 

 

The mass of the fluid and pipe per unit length, 𝑚𝑓 and 𝑚𝑝 respectively. Their expressions can be given as: 

 

𝑚𝑝 = ∫ ∫ 𝜌(𝑧)𝑑𝑧𝑑𝑟,   
ℎ

2⁄
−ℎ

2⁄

2𝜋𝑅𝑚

0
𝑚𝑓 = 𝜌𝑓 𝐴𝑓 (14) 

 

where 𝜌𝑓is the density of fluid in FGM micro-pipe and 𝐴𝑓 is the flow cross-sectional area. 

The kinetic energy of FGM micro-pipe and fluid [27] is known as follows: 

 

𝑇𝑝 =
1

2
∫ 𝜌𝐴𝑒𝑞 (

𝜕𝑤

𝜕𝑡
)

2
𝑑𝑥

𝐿

0
 (15) 

 

𝑇𝑓 =
1

2
∫ 𝑚𝑓 (

𝜕𝑤

𝜕𝑡
+ 𝑢𝑓

𝜕𝑤

𝜕𝑥
)

2
𝑑𝑥

𝐿

0
 (16) 

 

2.4 Governing equations 

The governing equations for FGM micro-pipe conveying fluid are derived by extended Hamilton’s 

principles as [25]: 

 

𝛿 ∫ (𝑇𝑝 + 𝑇𝑓 − 𝑈)𝑑𝑡 = 0
𝑡2

𝑡1
 (17) 

 

After substitute equations (11), (15) and (16) into equation (17) (see Appendix for the derivation). The 

equation of motion for a FGM micro pipe convening fluid is: 

 

(𝐸𝐼𝑒𝑞 + 𝐺𝐴𝑒𝑞𝐿2)
𝜕4𝑤

𝜕𝑥4 + 𝛼𝑚𝑓𝑢𝑓
2 𝜕2𝑤

𝜕𝑥2 + 2𝑚𝑓𝑢𝑓
𝜕2𝑤

𝜕𝑥𝜕𝑡
+ (𝑚𝑓 + 𝑚𝑝)

𝜕2𝑤

𝜕𝑥2 = 0 (18) 

 

where α is a factor referred to the effect of micro-flow velocity [14], the non-dimensional form for the 

equation of motion for FGM micro pipe convening fluid is: 

 

(𝛾 + 𝜇)
𝜕4𝑤𝑑

𝜕𝜉4 + (𝛼𝑈2)
𝜕2𝑤𝑑

𝜕𝜉2 + 2𝑈𝑀𝑟0.5 𝜕2𝑤𝑑

𝜕𝜉𝜕𝜏
+

𝜕2𝑤𝑑

𝜕𝜉2 = 0 (19) 
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where:  

 

𝜉 =
𝑥

𝐿
,     𝑤𝑑 =

𝑤

𝐿  
,   𝜆 =

𝑙

𝐷𝑜
      

𝑀𝑟 =
𝑚𝑓

𝑚𝑓+𝑚𝑝
, 𝜏 = √

𝐸𝑐𝐼𝑜

(𝑚𝑓+𝑚𝑝)

𝑡

𝐿2 
  (20) 

𝑈 = √
𝑚𝑓

𝐸𝑐𝐼𝑜
𝑢𝐿, 𝜇 =

𝐺𝐴𝑒𝑞𝐿2

𝐸𝑐𝐼𝑜
,   𝛾 =

𝐸𝐼𝑒𝑞

𝐸𝑐𝐼𝑜
  

 

In this work, three cases of ends boundary conditions are considered as shown in Figure 4. 

Thus, the BCs at the ends of FG micro-pipe are: 

1- Simply support (pined- pined): 

 

𝐴𝑡  𝜉 = 0 → 𝑤𝑑(𝜉) = 0 ,
𝜕2𝑤𝑑(𝜉)

𝜕𝜉2 = 0   

𝐴𝑡  𝜉 = 1 → 𝑤𝑑(𝜉) = 0 ,
𝜕2𝑤𝑑(𝜉)

𝜕𝜉2 = 0 (21) 

 

2- Clamped-Clamped: 

 

𝐴𝑡  𝜉 = 0 → 𝑤𝑑(𝜉) = 0  ,
𝜕𝑤𝑑(𝜉)

𝜕𝜉
= 0   

𝐴𝑡  𝜉 = 1 → 𝑤𝑑(𝜉) = 0  ,
𝜕𝑤𝑑(𝜉)

𝜕𝜉
= 0 (22) 

 

3- Clamped- free (cantilevered): 

 

𝐴𝑡  𝜉 = 0 → 𝑤𝑑(𝜉) = 0  ,
𝜕𝑤𝑑(𝜉)

𝜕𝜉
= 0   

𝐴𝑡  𝜉 = 1 →  
𝜕2𝑤𝑑(𝜉)

𝜕𝜉2 = 0 ,
𝜕3𝑤𝑑(𝜉)

𝜕𝜉3 = 0 (23) 

 

 
 

Figure 4. The boundary conditions for micro-pipe. 
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3. Solution method 
The technique of differential transformation, which was first suggested by Zhou (1986) [7] considered as 

one of the numerical processes for solving ordinary and the partial differential equations with fast small 

arithmetic errors and convergence rate. It employed a polynomial model that is sufficiently differentiable 

in order to the convergence to the exact solution. The technique is based on the Taylor series expansion. 

The main variance between differential transformation (DT) method and Taylor series method is that the 

former requires calculations of higher order derivatives that are quite often tremendous and difficult, while 

the latter includes iterative procedures instead of that. Applying of differential transformation (DT) method 

in resolving vibration problems in general includes two transformations; they are differential 

transformation and the inverse differential transformation [9]. 

The differential transformation of a 𝑘𝑡ℎderivative of function 𝑦(𝑥)is showed as follows: 

 

𝑦(𝑘) =
1

𝑘!
[

𝑑𝑘

𝑑𝜉𝑘  𝑦(𝜉)]
𝜉=0

 (24) 

 

And differential inverse transformation for 𝑦(𝑘)is showed as follows: 

 

𝑦(𝜉) = ∑ 𝑦𝑘(𝜉 − 𝜉𝑜)𝑘∞
𝑘=0  (25) 

 

Combining Eq. (24) and (25), gives 

 

𝑦(𝜉) = ∑
(𝜉−𝜉𝑜)𝑘

𝑘!
[

𝑑𝑘 𝑦(𝜉)

𝑑𝜉𝑘 ]
𝜉=𝜉𝑜

∞
𝑘=0  (26) 

 

Which is Taylor series for  y(ξ) at ξ = ξo. Equation (26) refers to that the idea of differential transformation 

(DT) is derived for the expansion of the Taylor series. In practical applications, function y(ξ) is expressed 

through a finite string and an inverse differential transform is written as follows: 

 

𝑦(𝜉) = ∑ 𝑦𝑘(𝜉 − 𝜉𝑜)𝑘𝑛
𝑘=0  (27) 

 

Eq. (27) implies that  ∑ 𝑦𝑘(𝜉 − 𝜉𝑜)𝑘∞
𝑘=𝑛+1  is negligibly small. Theorems that are repeatedly used in the 

conversion of the equations of motion and boundary conditions and they are listed in Tables 2 and 3, 

respectively. 

 

y(k) =
(k+m)!

k!
U(k + m) (28) 

 

3.1 Formulation of (DT) method 

The solution of Eq. (19) may be expressed as [9]: 

 

w(ξ, τ) = y(ξ)eωτ (29) 

 

where ω is the vibration frequency, Substituting Eq. (29) into Eq. (19) yields: 

 

(γ + μ)
∂4y(ξ)

∂ξ4 + (αU2)
∂2y(ξ)

∂ξ2 + 2UMr0.5ω
dy(ξ)

dξ
− y(ξ)ω2 = 0 (30) 

 

Applying the DTM into the vibration equation (30) resulted as: 

 

(γ + μ)(k + 1)(k + 2)(k + 3)(k + 4)y(k + 4) + (αU2)(k + 1)(k + 2)y(k + 2) +   
2UMr0.5ω(k + 1)y(k + 1) − y(k)ω2 = 0 (31) 

 

After simplifying Eq. (31): 
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y(k + 4) =
−(αU2)

(γ+μ)(k+3)(k+4)
y(k + 2) −

2UMr0.5ω

(γ+μ)(k+2)(k+3)(k+4)
y(k + 1) +   

ω2

(γ+μ)(k+1)(k+2)(k+3)(k+4)
y(k)   (32) 

 

Table 2. Basic theorems of the DTM for the equation of motion. 

 

Original function Transformed function 

𝐰(𝛏) = 𝐲(𝛏) ± 𝐳(𝛏) 

𝐰(𝛏) = 𝛌𝐲(𝛏) 

𝐰(𝛏) =
𝐝𝐧𝐲(𝛏)

𝐝𝐱𝐧
 

𝐰(𝛏) = 𝐲(𝛏)𝐳(𝛏) 
 

𝐰(𝛏) = 𝐱𝐦 

W(k) = Y(k) ± Z(k) 

W(k) = λY(k) 

W(k) = (k + 1)(k + 2) … (k + n)Y(k + n) 

W(k) = ∑ Y(l)Z(k − 1)

k

l=0

 

W(ξ) = δ(k − m) = {
1, k = m
2, k ≠ m

} 

 

Table 3. The DTM theorem for boundary conditions. 

 

𝜉=0 𝜉=1 

Original BC Transformed BC Original BC Transformed BC 

𝐰(𝟎) = 𝟎 
𝐝𝐰(𝟎)

𝐝𝛏
= 𝟎 

𝐝𝟐𝐰(𝟎)

𝐝𝛏𝟐
= 𝟎 

𝐝𝟑𝐰(𝟎)

𝐝𝛏𝟑
= 𝟎 

 

 

W(0) = 0 
 

W(1) = 0 
 

W(2) = 0 
 

W(3) = 0 
 

w(1) = 0 
dw(1)

dξ
= 0 

d2w(1)

dξ2
= 0 

d3w(1)

dξ3
= 0 

∑ W(k) = 0

∞

K=0

 

∑ kW(k) = 0

∞

K=0

 

∑ k(k − 1)W(k) = 0

∞

K=0

 

∑ k(k − 1)(k − 2)W(k) = 0

∞

K=0

 

 

For the boundary conditions, Equations (21), (22), and (23) can be written in the differential transformation 

(DT) form as follows:  

(1) Simply support: 

 

𝑊(0) = 𝑊(2) = 0 (33) 

 

∑ 𝑊(𝑘) = 0∞
𝐾=0  , (34) 

 

∑ 𝑘(𝑘 − 1)𝑊(𝑘) = 0∞
𝐾=0  , (35) 

 

(2) clamped-clamped: 

 

𝑊(0) = 𝑊(1) = 0 (36) 

 

∑ 𝑊(𝑘) = 0 ,∞
𝐾=0  (37) 

 

∑ 𝑘𝑊(𝑘) = 0 ,∞
𝐾=0  (38) 

 

(3) Cantilevered pipe: 

 

𝑊(0) = 𝑊(1) = 0 (39) 
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∑ 𝑘(𝑘 − 1)𝑊(𝑘) = 0∞
𝐾=0  (40) 

 

∑ 𝑘(𝑘 − 1)(𝑘 − 2)𝑊(𝑘) = 0∞
𝐾=0 , (41) 

 

The differential transformation method is summarized in the flow chart shown in Figure 5. 
 

 
 

Figure 5. Flow chart for solving the partial differential equation of FGM micro pipe conveying fluid. 

 

Considering Eq. (32) and boundary conditions for obtaining the solutions of the free vibration of fluid-

conveying FGM micro-pipe in case of simply support. From Eqs. (32)-(35). W(2) and W(4) are anonymous 

parameters and known as 𝑊(2) = 𝑐1,𝑊(4) = 𝑐2. With Eq. (30), W (k) can be computed by a repeated 

stride. After replacing W(k) into Eqs. (34) and (35), these equations can be written as in the following 

matrix: 

 

[
𝑤11        𝑤12

𝑤21         𝑤22
] [

𝑐1

𝑐2
] = 0 (42) 

 

where 𝑤𝑖𝑗 are connected with eigenvalues and another parameters of the system. To obtain the solution of 

Eq. (42), it is wanted that a determinant of the matrix equal to zero, namely 
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|
𝑤11

(𝑁)
        𝑤12

(𝑁)

𝑤21
(𝑁)

         𝑤22
(𝑁)

| = 0 (43) 

 

Thus, an eigenvalue (w) can be calculated numerically from Eq. (43). Mostly, where w is complex number 

𝑤 = 𝑎 ± 𝑖𝑏. The real part of w refers to the vibration frequency of system, and an imaginary part of w 

refers to the damping [28]. The accuracy of (DT) method counts on a number of terms N. The results of 

the (DT) method be nigh to exact solutions with an increase of N, and N is determined by 
 

|𝑤𝑖
𝑁 − 𝑤𝑖

𝑁−1| < 𝛿 (44) 

 

In the present study, the value of δ = 0.00001 and it's showing the precision of calculations. With respect 

to a differential transformation method and the algorithm above, the MATLAB code has been developed 

in order to find the vibration characteristics of FGM micro-pipe conveying fluid. 

 

4. Result and discussions 

The parameters of geometrical for FGM micro-pipe were used as those utilized by Deng et al [27] as 

Di/Do=0.9, Do=20 μm, length 𝑙 of FGM micro-pipe is assumed 17.6 μm, the density of fluid is 𝜌𝑓 =

1000 𝑘𝑔/𝑚3 and the mechanical properties for a constituent materials are shown in Table 1.  

MATLAB package was developed to investigate the influence of different parameters on the free vibration 

of fluid-conveying FGM micro-pipe. The natural frequencies for flow conveying FGM micro-pipes are 

dependent on a fluid velocity (u). It should be referred to that the pipe will act as a straight beam when u 

= 0, and natural frequencies from which can be acquired analytically. 

Table 4 presents the first four dimensionless vibration frequency with flow velocity u=0 and the graded 

material p=0, which represents a homogenous pipe conveying fluid. As presented in this table, the results 

of DTM become closer to the results of VIM solution reported in [6]. In addition, good agreement is found. 

 

Table 4. Comparison of dimensionless natural frequency for homogenous pipe with different end 

condition for (u=0). 
 

Type of support Method 𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 

Pinned – pinned DTM 9.8696 39.4784 88.8264 157.9099 

VIM [6] 9.8696 39.4784 88.8264 157.9137 

Clamped - clamped DTM 22.3733 61.6728 120.9034 199.8050 
VIM [6] 22.3733 61.6728 120.9034 199.8594 

Clamped - free DTM 3.5160 22.0345 61.6972 120.9018 
VIM [6] 3.5160 22.0345 61.6971 120.9019 

 

Figures 6a, 6b, and 6c show the fundamental first three modes of fluid-conveying FGM micro-pipe with 

three end conditions as a function of the number of terms (N) with p=1 and u=2. The precision of DTM 

increases with increasing of N as shown. The number of terms N, for the DTM, was selected to be N = 35 

in all tables and figures appeared in this paper. The first, second and third modes for simply support are 

(w1 = 38.6069, w2 = 155.954, w3 = 351.528), for clamped-clamped are (w1 = 88.3909, w2 =
244.042, w3 = 478.746), and for clamped-free are (w1 = 14.0585, w2 = 87.0209,   w3 = 244.14). 

Table 5 shows the effect of volume fraction exponent (p) and flow velocity on the first natural frequency 

of FGM micro-pipe for different end conditions. This result indicates that the increase for the fluid velocity 

leads to a decrease in natural frequency values for each boundary conditions. While vibration frequency 

of FGM micro-pipe will increase with an increase in the exponent of volume fraction p. This is generally 

due to the fact that alumina content in FGM micro-pipe increases, whilst the aluminum content decrease 

with an increasing an exponent, and the alumina Young’s modulus is frequently greater than that from 

aluminum. 

The real components of the fundamental natural frequency for a simply supported, clamped-clamped and 

cantilever FGM micro-pipe conveying fluid with dimensionless fluid velocity at the various value of 

volume fraction exponent (p=0, 1, 5, 10, and 100) are presented in Figures 7a, 7b, and 7c, respectively. It 

is noted that the real part of vibration frequency and the critical of flow velocity will increase with an 
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increase in a volume fraction index p. When p=10 the critical velocity and natural frequency are greater 

than that for p=0 and p=1 for three end conditions. 

The dimensionless real components of eigenvalues for a simply supported, clamped-clamped and 

cantilever FGM pipe with dimensionless flow velocity for different dimensionless parameters of length 

scale Do/l are shown in Figures 8a, 8b, and 8c respectively. The results are presented for different Do/l, 

Do/l = 1, 2, 6, and 10. For numerical calculations, in this case, p=1. It can be noted that through increasing 

Do/l, each of the bending stiffness of the FGM pipe, the real eigenvalue and the critical flow velocity 

decreases. 
 

  
(a) (b) 

 

 
 

(c) 
 

Figure 6. Natural frequency versus N for first, second and third modes with p=1 and u=2 m/s for  

(a) simply support, (b) clamped-clamped, and (c) clamped-free. 

 

Table 5. The first natural frequency with various value of velocity and fraction index n. 
 

Volume fraction index (n) u B.C 

p=100 p=10 p=3 p=1 p=0  

 

Simply - Simply 
50.6266 48.9098 45.3522 39.1148 21.8172 0 

50.2352 48.5045 44.9148 38.6069 20.8929 2 

49.0422 47.2679 43.5764 37.0413 17.8347 4 

46.9866 45.1316 41.2494 34.2733 10.9856 6 

114.7650 110.8730 102.8080 88.6689 49.4571 0  

 

Clamped-clamped 
114.5500 110.6510 102.5690 88.3909 48.9568 2 

113.9040 109.9810 101.8460 87.5512 47.4211 4 

112.8170 108.8560 100.6290 86.1316 44.7329 6 

17.5436 16.9486 15.7158 13.5544 7.56029 0  

 

Clamped -free 
17.3353 16.7301 15.4736 13.2608 6.97542 2 

16.7001 16.0625 14.7310 12.3525 4.96165 4 

15.6027 14.9053 13.4325 10.7256 0 6 
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(a) (b) 

 

 
(c) 

 

Figure 7. The natural frequency with velocity for various value exponent of volume fraction p: (a) for 

simply support, (b) for clamped-clamped and (c) for clamped free support. 
 

  
(a) (b) 

 

 
(c) 

 

Figure 8. Natural frequency with velocity for different value of length scale parameter (D/L): (a) simply 

support (b) clamped-clamped (c) clamped –free. 
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It is concluded that the influence of length scale for material on a free vibration of FGM micro-pipe 

conveying fluid is very important, in addition, it makes a micropipe more stable, mostly when a diameter 

of micro-pipe is comparable to a parameter of length scale (Do/L) of material. This is due to that a 

parameter of length scale has an influence on increasing an equivalent bending hardness [(𝐸𝐼𝑒𝑞) +

(𝐺𝐴𝑒𝑞𝐿2)].  

Figures 9a, 9b, and 9c show the effect of the exponent of volume fraction on free vibration of (FG) micro-

pipes conveying fluid for the first three fundamental frequencies of pinned –pinned FGM micro-pipe and 

(Do/l = 10) as a function of dimensionless fluid velocity u. The results are presented for different p, p= 0, 

1, and 10. From Figure 9a it can be seen that the FGM micro-pipe for simply support displays some more 

interesting and complex dynamic behaviors when an exponent p = 0, the divergence of the first mode 

happens at u =0.8, the divergence of a second mode happens at u =1.6, and the divergence happens in the 

third mode at u = 2.36. therefore, it is of important noted that when a fluid flow velocity u increases to 3.2, 

the combination of 2nd and 3rd modes appears, a real part is positive, and an imaginary part is negative. 

This means the simply support FGM micro-pipe loses the stability by a combined modes (flutter), and the 

conformable velocity is a flutter velocity. 

Figures 10a, 10b, and 10c depicted the effect of volume fraction index on the real and imaginary eigenvalue 

for the first three modes of clamped FGM micropipe versus dimensionless flow velocity. When p=0, the 

divergence of the first mode happens at u =1.62, while the divergence of a second mode happens at u 

=2.24, and the divergence happens in the third mode at u = 3.34. Thereafter, it is of important noted that 

when fluid flow velocity (u) increase to 3.41, the combination form 2nd and 3rd modes happened as shown 

in Figure 10a. While, when p=1, a divergence of first mode is u=2.82, and, when p=10 the divergence of 

the first mode happens at u=3.56, the divergence of 2nd and 3rd modes does not happen for the range of 

fluid flow velocity u < 4 for p=10 as shown in Figures 10b and 10c respectively. Therefore, the stability 

for FGM micro-pipe increases with an increase in an exponent of the volume fraction. It is furthermore 

found that real parts and critical velocities will increase with an increase in the exponent of volume fraction. 

For the case of clamped-free support shown in Figures 11a, 11b, and 11c respectively, the divergence of a 

first mode happens at u =5.6 when p=0 while divergence of a second mode happened at u =11.8, it is of 

important noted that as a fluid flow velocity (u) increases to 12.7, the combination form 2nd and 3rd modes 

happens as shown in Figure 11a. And when p=1 the first mode divergence occurs at u=10.3 while when 

p=10 the first mode divergence at u=13.3 Figure (10c), doesn’t occur divergence in a second and third 

mode in range u < 16 as shown in Figures 11b, and 11c respectively. 

 

5. Conclusion 

Free vibration and stability for a functionally graded (FG) material micro-pipe conveying fluid are 

investigated in this paper. Equations of motion are acquired by stratifying a modified couple stress (MCS) 

theory and the Hamilton’s principle. Thereafter, the differential transformation (DT) method is progressed 

to find a complex eigenvalue. Some main inferences acquired from the results above are offered as follows: 

1. The increase in a volume fraction exponent (p) leads to increase rapidly in the natural frequencies and 

can be modified by the distribution of natural frequencies readily by designing of the exponent of 

volume fraction (p). 

2. The real natural frequency decreases with an increase in the parameter of length scale, a size effect is 

very important when the outer diameter comparable into the parameter of length scale for FGM 

micropipe and it makes a FGM micro pipe conveying the fluid more stable. 

3. The critical velocities increase with an increase in an exponent of volume fraction (p), it can be 

concluded that a stability of FG micro-pipe increases with an increase in an exponent of volume 

fraction (p). 

4. The present work has demonstrated that the differential transformation method has a computational 

efficiency and high degree of accuracy in vibration analysis for FGM micro pipes with flowing fluid. 
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(a) 

 

  
 

(b) 

 

  
 

(c) 

 

Figure 9. First three natural frquencies of FGM micro pipe with dimensionless fluid vilocity for 

simply support at: (a) p=0, (b) p=1 and (c) p=10. 
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(a) 

 

  
 

(b) 

 

  
 

(c) 

 

Figure 10. First three natural frquencies of FGM micro pipe with dimensionless fluid vilocity for 

clamped-clamped support at: (a) p=0, (b) p=1 and (c) p=10. 
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(a) 

 

  
 

(b) 

 

  
 

(c) 

 

Figure 11. First three natural frquencies of FGM micro pipe with dimensionless fluid vilocity for 

clamped-free support at: a) p=0, b) p=1 and c) p=1. 
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List of symbols 

E Young’s modulus  z the distance to the mid-plane of the FG micro pipe 

ρp the density of FGM micro pipe  Vc volume fraction at inner 

ρf the density of fluid Vm volume fraction at outer 

ν Poison ratio mf The mass of the fluid 

Ri the inner radii of FGM micro pipe mp The mass of the micro pipe 

Ro The outer radii of FGM micro pipe  Af Flow cross sectional area  

h the thickness direction T Kinetic energy 

L Length of micro pipe α the effect of size for micro-flow 

u fluid velocity U Strain energy 

𝑝  volume fraction exponent Mr the mass ratio 

G the modulus of rigidity   

 

 

Appendix 

𝛿 ∫ [
1

2
∫ 𝑚𝑝 (

𝜕𝑤

𝜕𝑡
)

2
𝑑𝑥

𝐿

0
+

1

2
∫ 𝑚𝑓 (

𝜕𝑤

𝜕𝑡
+ 𝑢𝑓

𝜕𝑤

𝜕𝑥
)

2
𝑑𝑥

𝐿

0
− [

1

2
∫ 𝐸𝐼𝑒𝑞 (

𝜕2𝑤

𝜕𝑥2 )
2

𝑑𝑥 +
𝐿

0

𝑡2

𝑡1

1

2
 ∫ 𝐺𝐴𝑒𝑞𝑙2  (

𝜕2𝑤

𝜕𝑥2 )
2

𝐿

0
𝑑𝑥]]  𝑑𝑡 = 0  (A1) 
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1

2
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0
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